Extensions 1→N→G→Q→1 with N=C3 and Q=C3×A4⋊C4

Direct product G=N×Q with N=C3 and Q=C3×A4⋊C4
dρLabelID
C32×A4⋊C4108C3^2xA4:C4432,615

Semidirect products G=N:Q with N=C3 and Q=C3×A4⋊C4
extensionφ:Q→Aut NdρLabelID
C3⋊(C3×A4⋊C4) = C3×C6.7S4φ: C3×A4⋊C4/C6×A4C2 ⊆ Aut C3366C3:(C3xA4:C4)432,618

Non-split extensions G=N.Q with N=C3 and Q=C3×A4⋊C4
extensionφ:Q→Aut NdρLabelID
C3.1(C3×A4⋊C4) = C62.Dic3φ: C3×A4⋊C4/C6×A4C2 ⊆ Aut C3366-C3.1(C3xA4:C4)432,249
C3.2(C3×A4⋊C4) = C3×C6.S4φ: C3×A4⋊C4/C6×A4C2 ⊆ Aut C3366C3.2(C3xA4:C4)432,250
C3.3(C3×A4⋊C4) = C625Dic3φ: C3×A4⋊C4/C6×A4C2 ⊆ Aut C3366-C3.3(C3xA4:C4)432,251
C3.4(C3×A4⋊C4) = C9×A4⋊C4central extension (φ=1)1083C3.4(C3xA4:C4)432,242

׿
×
𝔽