Extensions 1→N→G→Q→1 with N=C3⋊D12 and Q=S3

Direct product G=N×Q with N=C3⋊D12 and Q=S3
dρLabelID
S3×C3⋊D12248+S3xC3:D12432,598

Semidirect products G=N:Q with N=C3⋊D12 and Q=S3
extensionφ:Q→Out NdρLabelID
C3⋊D121S3 = C3⋊S34D12φ: S3/C3C2 ⊆ Out C3⋊D12248+C3:D12:1S3432,602
C3⋊D122S3 = D6.4S32φ: S3/C3C2 ⊆ Out C3⋊D12488-C3:D12:2S3432,608
C3⋊D123S3 = D6⋊S32φ: S3/C3C2 ⊆ Out C3⋊D12488-C3:D12:3S3432,600
C3⋊D124S3 = (S3×C6)⋊D6φ: S3/C3C2 ⊆ Out C3⋊D12248+C3:D12:4S3432,601
C3⋊D125S3 = D6.3S32φ: S3/C3C2 ⊆ Out C3⋊D12248+C3:D12:5S3432,609
C3⋊D126S3 = D6.6S32φ: S3/C3C2 ⊆ Out C3⋊D12488-C3:D12:6S3432,611
C3⋊D127S3 = D6.S32φ: trivial image488-C3:D12:7S3432,607


׿
×
𝔽