Extensions 1→N→G→Q→1 with N=C4 and Q=C2xC9:S3

Direct product G=NxQ with N=C4 and Q=C2xC9:S3
dρLabelID
C2xC4xC9:S3216C2xC4xC9:S3432,381

Semidirect products G=N:Q with N=C4 and Q=C2xC9:S3
extensionφ:Q→Aut NdρLabelID
C4:1(C2xC9:S3) = D4xC9:S3φ: C2xC9:S3/C9:S3C2 ⊆ Aut C4108C4:1(C2xC9:S3)432,388
C4:2(C2xC9:S3) = C2xC36:S3φ: C2xC9:S3/C3xC18C2 ⊆ Aut C4216C4:2(C2xC9:S3)432,382

Non-split extensions G=N.Q with N=C4 and Q=C2xC9:S3
extensionφ:Q→Aut NdρLabelID
C4.1(C2xC9:S3) = C36.17D6φ: C2xC9:S3/C9:S3C2 ⊆ Aut C4216C4.1(C2xC9:S3)432,190
C4.2(C2xC9:S3) = C36.18D6φ: C2xC9:S3/C9:S3C2 ⊆ Aut C4216C4.2(C2xC9:S3)432,191
C4.3(C2xC9:S3) = C36.19D6φ: C2xC9:S3/C9:S3C2 ⊆ Aut C4432C4.3(C2xC9:S3)432,194
C4.4(C2xC9:S3) = C36.20D6φ: C2xC9:S3/C9:S3C2 ⊆ Aut C4216C4.4(C2xC9:S3)432,195
C4.5(C2xC9:S3) = C36.27D6φ: C2xC9:S3/C9:S3C2 ⊆ Aut C4216C4.5(C2xC9:S3)432,389
C4.6(C2xC9:S3) = Q8xC9:S3φ: C2xC9:S3/C9:S3C2 ⊆ Aut C4216C4.6(C2xC9:S3)432,392
C4.7(C2xC9:S3) = C36.29D6φ: C2xC9:S3/C9:S3C2 ⊆ Aut C4216C4.7(C2xC9:S3)432,393
C4.8(C2xC9:S3) = C24.D9φ: C2xC9:S3/C3xC18C2 ⊆ Aut C4432C4.8(C2xC9:S3)432,168
C4.9(C2xC9:S3) = C24:D9φ: C2xC9:S3/C3xC18C2 ⊆ Aut C4216C4.9(C2xC9:S3)432,171
C4.10(C2xC9:S3) = C72:1S3φ: C2xC9:S3/C3xC18C2 ⊆ Aut C4216C4.10(C2xC9:S3)432,172
C4.11(C2xC9:S3) = C2xC12.D9φ: C2xC9:S3/C3xC18C2 ⊆ Aut C4432C4.11(C2xC9:S3)432,380
C4.12(C2xC9:S3) = C8xC9:S3central extension (φ=1)216C4.12(C2xC9:S3)432,169
C4.13(C2xC9:S3) = C72:S3central extension (φ=1)216C4.13(C2xC9:S3)432,170
C4.14(C2xC9:S3) = C2xC36.S3central extension (φ=1)432C4.14(C2xC9:S3)432,178
C4.15(C2xC9:S3) = C36.69D6central extension (φ=1)216C4.15(C2xC9:S3)432,179
C4.16(C2xC9:S3) = C36.70D6central extension (φ=1)216C4.16(C2xC9:S3)432,383

׿
x
:
Z
F
o
wr
Q
<