Extensions 1→N→G→Q→1 with N=C3×C3⋊D4 and Q=S3

Direct product G=N×Q with N=C3×C3⋊D4 and Q=S3
dρLabelID
C3×S3×C3⋊D4244C3xS3xC3:D4432,658

Semidirect products G=N:Q with N=C3×C3⋊D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×C3⋊D4)⋊1S3 = C62.90D6φ: S3/C3C2 ⊆ Out C3×C3⋊D472(C3xC3:D4):1S3432,675
(C3×C3⋊D4)⋊2S3 = C62.91D6φ: S3/C3C2 ⊆ Out C3×C3⋊D472(C3xC3:D4):2S3432,676
(C3×C3⋊D4)⋊3S3 = C3⋊S3×C3⋊D4φ: S3/C3C2 ⊆ Out C3×C3⋊D472(C3xC3:D4):3S3432,685
(C3×C3⋊D4)⋊4S3 = C6223D6φ: S3/C3C2 ⊆ Out C3×C3⋊D436(C3xC3:D4):4S3432,686
(C3×C3⋊D4)⋊5S3 = C3×D6.4D6φ: S3/C3C2 ⊆ Out C3×C3⋊D4244(C3xC3:D4):5S3432,653
(C3×C3⋊D4)⋊6S3 = C3×Dic3⋊D6φ: S3/C3C2 ⊆ Out C3×C3⋊D4244(C3xC3:D4):6S3432,659
(C3×C3⋊D4)⋊7S3 = C3×D6.3D6φ: trivial image244(C3xC3:D4):7S3432,652

Non-split extensions G=N.Q with N=C3×C3⋊D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×C3⋊D4).1S3 = Dic3.D18φ: S3/C3C2 ⊆ Out C3×C3⋊D4724(C3xC3:D4).1S3432,309
(C3×C3⋊D4).2S3 = D18.4D6φ: S3/C3C2 ⊆ Out C3×C3⋊D4724-(C3xC3:D4).2S3432,310
(C3×C3⋊D4).3S3 = D9×C3⋊D4φ: S3/C3C2 ⊆ Out C3×C3⋊D4724(C3xC3:D4).3S3432,314
(C3×C3⋊D4).4S3 = D18⋊D6φ: S3/C3C2 ⊆ Out C3×C3⋊D4364+(C3xC3:D4).4S3432,315

׿
×
𝔽