Extensions 1→N→G→Q→1 with N=He3⋊(C2×C4) and Q=C2

Direct product G=N×Q with N=He3⋊(C2×C4) and Q=C2
dρLabelID
C2×He3⋊(C2×C4)72C2xHe3:(C2xC4)432,321

Semidirect products G=N:Q with N=He3⋊(C2×C4) and Q=C2
extensionφ:Q→Out NdρLabelID
He3⋊(C2×C4)⋊1C2 = C12.S32φ: C2/C1C2 ⊆ Out He3⋊(C2×C4)7212-He3:(C2xC4):1C2432,299
He3⋊(C2×C4)⋊2C2 = C62.8D6φ: C2/C1C2 ⊆ Out He3⋊(C2×C4)7212-He3:(C2xC4):2C2432,318
He3⋊(C2×C4)⋊3C2 = C622D6φ: C2/C1C2 ⊆ Out He3⋊(C2×C4)366He3:(C2xC4):3C2432,324
He3⋊(C2×C4)⋊4C2 = C32⋊D6⋊C4φ: C2/C1C2 ⊆ Out He3⋊(C2×C4)366He3:(C2xC4):4C2432,238
He3⋊(C2×C4)⋊5C2 = C4×C32⋊D6φ: trivial image366He3:(C2xC4):5C2432,300

Non-split extensions G=N.Q with N=He3⋊(C2×C4) and Q=C2
extensionφ:Q→Out NdρLabelID
He3⋊(C2×C4).1C2 = C12.85S32φ: C2/C1C2 ⊆ Out He3⋊(C2×C4)726-He3:(C2xC4).1C2432,298
He3⋊(C2×C4).2C2 = C6.S3≀C2φ: C2/C1C2 ⊆ Out He3⋊(C2×C4)726-He3:(C2xC4).2C2432,237

׿
×
𝔽