Extensions 1→N→G→Q→1 with N=C3 and Q=C2xDic18

Direct product G=NxQ with N=C3 and Q=C2xDic18
dρLabelID
C6xDic18144C6xDic18432,340

Semidirect products G=N:Q with N=C3 and Q=C2xDic18
extensionφ:Q→Aut NdρLabelID
C3:1(C2xDic18) = S3xDic18φ: C2xDic18/Dic18C2 ⊆ Aut C31444-C3:1(C2xDic18)432,284
C3:2(C2xDic18) = C2xC9:Dic6φ: C2xDic18/C2xDic9C2 ⊆ Aut C3144C3:2(C2xDic18)432,303
C3:3(C2xDic18) = C2xC12.D9φ: C2xDic18/C2xC36C2 ⊆ Aut C3432C3:3(C2xDic18)432,380

Non-split extensions G=N.Q with N=C3 and Q=C2xDic18
extensionφ:Q→Aut NdρLabelID
C3.(C2xDic18) = C2xDic54φ: C2xDic18/C2xC36C2 ⊆ Aut C3432C3.(C2xDic18)432,43

׿
x
:
Z
F
o
wr
Q
<