Extensions 1→N→G→Q→1 with N=C3 and Q=S3×Dic6

Direct product G=N×Q with N=C3 and Q=S3×Dic6
dρLabelID
C3×S3×Dic6484C3xS3xDic6432,642

Semidirect products G=N:Q with N=C3 and Q=S3×Dic6
extensionφ:Q→Aut NdρLabelID
C31(S3×Dic6) = S3×C322Q8φ: S3×Dic6/S3×Dic3C2 ⊆ Aut C3488-C3:1(S3xDic6)432,603
C32(S3×Dic6) = C335(C2×Q8)φ: S3×Dic6/C322Q8C2 ⊆ Aut C3488-C3:2(S3xDic6)432,604
C33(S3×Dic6) = C3⋊S3×Dic6φ: S3×Dic6/C3×Dic6C2 ⊆ Aut C3144C3:3(S3xDic6)432,663
C34(S3×Dic6) = S3×C324Q8φ: S3×Dic6/S3×C12C2 ⊆ Aut C3144C3:4(S3xDic6)432,660
C35(S3×Dic6) = C3⋊S34Dic6φ: S3×Dic6/C324Q8C2 ⊆ Aut C3484C3:5(S3xDic6)432,687

Non-split extensions G=N.Q with N=C3 and Q=S3×Dic6
extensionφ:Q→Aut NdρLabelID
C3.1(S3×Dic6) = D9×Dic6φ: S3×Dic6/C3×Dic6C2 ⊆ Aut C31444-C3.1(S3xDic6)432,280
C3.2(S3×Dic6) = S3×Dic18φ: S3×Dic6/S3×C12C2 ⊆ Aut C31444-C3.2(S3xDic6)432,284
C3.3(S3×Dic6) = C3⋊S3⋊Dic6φ: S3×Dic6/C324Q8C2 ⊆ Aut C37212-C3.3(S3xDic6)432,294

׿
×
𝔽