Extensions 1→N→G→Q→1 with N=C24 and Q=C18

Direct product G=N×Q with N=C24 and Q=C18
dρLabelID
C6×C72432C6xC72432,209

Semidirect products G=N:Q with N=C24 and Q=C18
extensionφ:Q→Aut NdρLabelID
C241C18 = C9×D24φ: C18/C9C2 ⊆ Aut C241442C24:1C18432,112
C242C18 = C9×C24⋊C2φ: C18/C9C2 ⊆ Aut C241442C24:2C18432,111
C243C18 = D8×C3×C9φ: C18/C9C2 ⊆ Aut C24216C24:3C18432,215
C244C18 = S3×C72φ: C18/C9C2 ⊆ Aut C241442C24:4C18432,109
C245C18 = C9×C8⋊S3φ: C18/C9C2 ⊆ Aut C241442C24:5C18432,110
C246C18 = SD16×C3×C9φ: C18/C9C2 ⊆ Aut C24216C24:6C18432,218
C247C18 = M4(2)×C3×C9φ: C18/C9C2 ⊆ Aut C24216C24:7C18432,212

Non-split extensions G=N.Q with N=C24 and Q=C18
extensionφ:Q→Aut NdρLabelID
C24.1C18 = C9×Dic12φ: C18/C9C2 ⊆ Aut C241442C24.1C18432,113
C24.2C18 = D8×C27φ: C18/C9C2 ⊆ Aut C242162C24.2C18432,25
C24.3C18 = Q16×C27φ: C18/C9C2 ⊆ Aut C244322C24.3C18432,27
C24.4C18 = Q16×C3×C9φ: C18/C9C2 ⊆ Aut C24432C24.4C18432,221
C24.5C18 = C9×C3⋊C16φ: C18/C9C2 ⊆ Aut C241442C24.5C18432,29
C24.6C18 = SD16×C27φ: C18/C9C2 ⊆ Aut C242162C24.6C18432,26
C24.7C18 = M4(2)×C27φ: C18/C9C2 ⊆ Aut C242162C24.7C18432,24

׿
×
𝔽