extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3×S4) = C32.CSU2(𝔽3) | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 144 | 12- | C6.1(C3xS4) | 432,243 |
C6.2(C3×S4) = C3×Q8.D9 | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 144 | 4 | C6.2(C3xS4) | 432,244 |
C6.3(C3×S4) = C32.GL2(𝔽3) | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 72 | 12+ | C6.3(C3xS4) | 432,245 |
C6.4(C3×S4) = C3×Q8⋊D9 | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 144 | 4 | C6.4(C3xS4) | 432,246 |
C6.5(C3×S4) = C32⋊CSU2(𝔽3) | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 144 | 12- | C6.5(C3xS4) | 432,247 |
C6.6(C3×S4) = C32⋊2GL2(𝔽3) | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 72 | 12+ | C6.6(C3xS4) | 432,248 |
C6.7(C3×S4) = C62.Dic3 | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 36 | 6- | C6.7(C3xS4) | 432,249 |
C6.8(C3×S4) = C3×C6.S4 | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 36 | 6 | C6.8(C3xS4) | 432,250 |
C6.9(C3×S4) = C62⋊5Dic3 | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 36 | 6- | C6.9(C3xS4) | 432,251 |
C6.10(C3×S4) = C2×C32.S4 | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 18 | 6+ | C6.10(C3xS4) | 432,533 |
C6.11(C3×S4) = C6×C3.S4 | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 36 | 6 | C6.11(C3xS4) | 432,534 |
C6.12(C3×S4) = C2×C62⋊S3 | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 18 | 6+ | C6.12(C3xS4) | 432,535 |
C6.13(C3×S4) = C3×C6.5S4 | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 48 | 4 | C6.13(C3xS4) | 432,616 |
C6.14(C3×S4) = C3×C6.6S4 | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 48 | 4 | C6.14(C3xS4) | 432,617 |
C6.15(C3×S4) = C3×C6.7S4 | φ: C3×S4/C3×A4 → C2 ⊆ Aut C6 | 36 | 6 | C6.15(C3xS4) | 432,618 |
C6.16(C3×S4) = C9×CSU2(𝔽3) | central extension (φ=1) | 144 | 2 | C6.16(C3xS4) | 432,240 |
C6.17(C3×S4) = C9×GL2(𝔽3) | central extension (φ=1) | 72 | 2 | C6.17(C3xS4) | 432,241 |
C6.18(C3×S4) = C9×A4⋊C4 | central extension (φ=1) | 108 | 3 | C6.18(C3xS4) | 432,242 |
C6.19(C3×S4) = C18×S4 | central extension (φ=1) | 54 | 3 | C6.19(C3xS4) | 432,532 |
C6.20(C3×S4) = C32×CSU2(𝔽3) | central extension (φ=1) | 144 | | C6.20(C3xS4) | 432,613 |
C6.21(C3×S4) = C32×GL2(𝔽3) | central extension (φ=1) | 72 | | C6.21(C3xS4) | 432,614 |
C6.22(C3×S4) = C32×A4⋊C4 | central extension (φ=1) | 108 | | C6.22(C3xS4) | 432,615 |