Extensions 1→N→G→Q→1 with N=C6 and Q=C3×S4

Direct product G=N×Q with N=C6 and Q=C3×S4
dρLabelID
C3×C6×S454C3xC6xS4432,760

Semidirect products G=N:Q with N=C6 and Q=C3×S4
extensionφ:Q→Aut NdρLabelID
C6⋊(C3×S4) = C6×C3⋊S4φ: C3×S4/C3×A4C2 ⊆ Aut C6366C6:(C3xS4)432,761

Non-split extensions G=N.Q with N=C6 and Q=C3×S4
extensionφ:Q→Aut NdρLabelID
C6.1(C3×S4) = C32.CSU2(𝔽3)φ: C3×S4/C3×A4C2 ⊆ Aut C614412-C6.1(C3xS4)432,243
C6.2(C3×S4) = C3×Q8.D9φ: C3×S4/C3×A4C2 ⊆ Aut C61444C6.2(C3xS4)432,244
C6.3(C3×S4) = C32.GL2(𝔽3)φ: C3×S4/C3×A4C2 ⊆ Aut C67212+C6.3(C3xS4)432,245
C6.4(C3×S4) = C3×Q8⋊D9φ: C3×S4/C3×A4C2 ⊆ Aut C61444C6.4(C3xS4)432,246
C6.5(C3×S4) = C32⋊CSU2(𝔽3)φ: C3×S4/C3×A4C2 ⊆ Aut C614412-C6.5(C3xS4)432,247
C6.6(C3×S4) = C322GL2(𝔽3)φ: C3×S4/C3×A4C2 ⊆ Aut C67212+C6.6(C3xS4)432,248
C6.7(C3×S4) = C62.Dic3φ: C3×S4/C3×A4C2 ⊆ Aut C6366-C6.7(C3xS4)432,249
C6.8(C3×S4) = C3×C6.S4φ: C3×S4/C3×A4C2 ⊆ Aut C6366C6.8(C3xS4)432,250
C6.9(C3×S4) = C625Dic3φ: C3×S4/C3×A4C2 ⊆ Aut C6366-C6.9(C3xS4)432,251
C6.10(C3×S4) = C2×C32.S4φ: C3×S4/C3×A4C2 ⊆ Aut C6186+C6.10(C3xS4)432,533
C6.11(C3×S4) = C6×C3.S4φ: C3×S4/C3×A4C2 ⊆ Aut C6366C6.11(C3xS4)432,534
C6.12(C3×S4) = C2×C62⋊S3φ: C3×S4/C3×A4C2 ⊆ Aut C6186+C6.12(C3xS4)432,535
C6.13(C3×S4) = C3×C6.5S4φ: C3×S4/C3×A4C2 ⊆ Aut C6484C6.13(C3xS4)432,616
C6.14(C3×S4) = C3×C6.6S4φ: C3×S4/C3×A4C2 ⊆ Aut C6484C6.14(C3xS4)432,617
C6.15(C3×S4) = C3×C6.7S4φ: C3×S4/C3×A4C2 ⊆ Aut C6366C6.15(C3xS4)432,618
C6.16(C3×S4) = C9×CSU2(𝔽3)central extension (φ=1)1442C6.16(C3xS4)432,240
C6.17(C3×S4) = C9×GL2(𝔽3)central extension (φ=1)722C6.17(C3xS4)432,241
C6.18(C3×S4) = C9×A4⋊C4central extension (φ=1)1083C6.18(C3xS4)432,242
C6.19(C3×S4) = C18×S4central extension (φ=1)543C6.19(C3xS4)432,532
C6.20(C3×S4) = C32×CSU2(𝔽3)central extension (φ=1)144C6.20(C3xS4)432,613
C6.21(C3×S4) = C32×GL2(𝔽3)central extension (φ=1)72C6.21(C3xS4)432,614
C6.22(C3×S4) = C32×A4⋊C4central extension (φ=1)108C6.22(C3xS4)432,615

׿
×
𝔽