Extensions 1→N→G→Q→1 with N=C9 and Q=C3×C4○D4

Direct product G=N×Q with N=C9 and Q=C3×C4○D4
dρLabelID
C4○D4×C3×C9216C4oD4xC3xC9432,409

Semidirect products G=N:Q with N=C9 and Q=C3×C4○D4
extensionφ:Q→Aut NdρLabelID
C91(C3×C4○D4) = D366C6φ: C3×C4○D4/C2×C4C6 ⊆ Aut C9726C9:1(C3xC4oD4)432,355
C92(C3×C4○D4) = Dic182C6φ: C3×C4○D4/D4C6 ⊆ Aut C97212-C9:2(C3xC4oD4)432,363
C93(C3×C4○D4) = D363C6φ: C3×C4○D4/Q8C6 ⊆ Aut C97212+C9:3(C3xC4oD4)432,371
C94(C3×C4○D4) = C4○D4×3- 1+2φ: C3×C4○D4/C4○D4C3 ⊆ Aut C9726C9:4(C3xC4oD4)432,411
C95(C3×C4○D4) = C3×D365C2φ: C3×C4○D4/C2×C12C2 ⊆ Aut C9722C9:5(C3xC4oD4)432,344
C96(C3×C4○D4) = C3×D42D9φ: C3×C4○D4/C3×D4C2 ⊆ Aut C9724C9:6(C3xC4oD4)432,357
C97(C3×C4○D4) = C3×Q83D9φ: C3×C4○D4/C3×Q8C2 ⊆ Aut C91444C9:7(C3xC4oD4)432,365

Non-split extensions G=N.Q with N=C9 and Q=C3×C4○D4
extensionφ:Q→Aut NdρLabelID
C9.(C3×C4○D4) = C4○D4×C27central extension (φ=1)2162C9.(C3xC4oD4)432,56

׿
×
𝔽