Extensions 1→N→G→Q→1 with N=C54 and Q=D4

Direct product G=N×Q with N=C54 and Q=D4
dρLabelID
D4×C54216D4xC54432,54

Semidirect products G=N:Q with N=C54 and Q=D4
extensionφ:Q→Aut NdρLabelID
C541D4 = C2×D108φ: D4/C4C2 ⊆ Aut C54216C54:1D4432,45
C542D4 = C2×C27⋊D4φ: D4/C22C2 ⊆ Aut C54216C54:2D4432,52

Non-split extensions G=N.Q with N=C54 and Q=D4
extensionφ:Q→Aut NdρLabelID
C54.1D4 = Dic108φ: D4/C4C2 ⊆ Aut C544322-C54.1D4432,4
C54.2D4 = C216⋊C2φ: D4/C4C2 ⊆ Aut C542162C54.2D4432,7
C54.3D4 = D216φ: D4/C4C2 ⊆ Aut C542162+C54.3D4432,8
C54.4D4 = C4⋊Dic27φ: D4/C4C2 ⊆ Aut C54432C54.4D4432,13
C54.5D4 = Dic27⋊C4φ: D4/C22C2 ⊆ Aut C54432C54.5D4432,12
C54.6D4 = D54⋊C4φ: D4/C22C2 ⊆ Aut C54216C54.6D4432,14
C54.7D4 = D4.D27φ: D4/C22C2 ⊆ Aut C542164-C54.7D4432,15
C54.8D4 = D4⋊D27φ: D4/C22C2 ⊆ Aut C542164+C54.8D4432,16
C54.9D4 = C27⋊Q16φ: D4/C22C2 ⊆ Aut C544324-C54.9D4432,17
C54.10D4 = Q82D27φ: D4/C22C2 ⊆ Aut C542164+C54.10D4432,18
C54.11D4 = C54.D4φ: D4/C22C2 ⊆ Aut C54216C54.11D4432,19
C54.12D4 = C22⋊C4×C27central extension (φ=1)216C54.12D4432,21
C54.13D4 = C4⋊C4×C27central extension (φ=1)432C54.13D4432,22
C54.14D4 = D8×C27central extension (φ=1)2162C54.14D4432,25
C54.15D4 = SD16×C27central extension (φ=1)2162C54.15D4432,26
C54.16D4 = Q16×C27central extension (φ=1)4322C54.16D4432,27

׿
×
𝔽