Extensions 1→N→G→Q→1 with N=C3 and Q=C12×A4

Direct product G=N×Q with N=C3 and Q=C12×A4
dρLabelID
A4×C3×C12108A4xC3xC12432,697

Semidirect products G=N:Q with N=C3 and Q=C12×A4
extensionφ:Q→Aut NdρLabelID
C3⋊(C12×A4) = C3×Dic3×A4φ: C12×A4/C6×A4C2 ⊆ Aut C3366C3:(C12xA4)432,624

Non-split extensions G=N.Q with N=C3 and Q=C12×A4
extensionφ:Q→Aut NdρLabelID
C3.1(C12×A4) = A4×C36central extension (φ=1)1083C3.1(C12xA4)432,325
C3.2(C12×A4) = C12×C3.A4central extension (φ=1)108C3.2(C12xA4)432,331
C3.3(C12×A4) = C4×C9⋊A4central stem extension (φ=1)1083C3.3(C12xA4)432,326
C3.4(C12×A4) = C4×C32.A4central stem extension (φ=1)363C3.4(C12xA4)432,332
C3.5(C12×A4) = C4×C32⋊A4central stem extension (φ=1)363C3.5(C12xA4)432,333

׿
×
𝔽