Extensions 1→N→G→Q→1 with N=C3 and Q=C6×Dic6

Direct product G=N×Q with N=C3 and Q=C6×Dic6
dρLabelID
C3×C6×Dic6144C3xC6xDic6432,700

Semidirect products G=N:Q with N=C3 and Q=C6×Dic6
extensionφ:Q→Aut NdρLabelID
C31(C6×Dic6) = C3×S3×Dic6φ: C6×Dic6/C3×Dic6C2 ⊆ Aut C3484C3:1(C6xDic6)432,642
C32(C6×Dic6) = C6×C322Q8φ: C6×Dic6/C6×Dic3C2 ⊆ Aut C348C3:2(C6xDic6)432,657
C33(C6×Dic6) = C6×C324Q8φ: C6×Dic6/C6×C12C2 ⊆ Aut C3144C3:3(C6xDic6)432,710

Non-split extensions G=N.Q with N=C3 and Q=C6×Dic6
extensionφ:Q→Aut NdρLabelID
C3.1(C6×Dic6) = C6×Dic18φ: C6×Dic6/C6×C12C2 ⊆ Aut C3144C3.1(C6xDic6)432,340
C3.2(C6×Dic6) = C2×He33Q8φ: C6×Dic6/C6×C12C2 ⊆ Aut C3144C3.2(C6xDic6)432,348
C3.3(C6×Dic6) = C2×C36.C6φ: C6×Dic6/C6×C12C2 ⊆ Aut C3144C3.3(C6xDic6)432,352
C3.4(C6×Dic6) = C18×Dic6central extension (φ=1)144C3.4(C6xDic6)432,341

׿
×
𝔽