Extensions 1→N→G→Q→1 with N=C3 and Q=Dic3xC2xC6

Direct product G=NxQ with N=C3 and Q=Dic3xC2xC6
dρLabelID
Dic3xC62144Dic3xC6^2432,708

Semidirect products G=N:Q with N=C3 and Q=Dic3xC2xC6
extensionφ:Q→Aut NdρLabelID
C3:1(Dic3xC2xC6) = S3xC6xDic3φ: Dic3xC2xC6/C6xDic3C2 ⊆ Aut C348C3:1(Dic3xC2xC6)432,651
C3:2(Dic3xC2xC6) = C2xC6xC3:Dic3φ: Dic3xC2xC6/C2xC62C2 ⊆ Aut C3144C3:2(Dic3xC2xC6)432,718

Non-split extensions G=N.Q with N=C3 and Q=Dic3xC2xC6
extensionφ:Q→Aut NdρLabelID
C3.1(Dic3xC2xC6) = C2xC6xDic9φ: Dic3xC2xC6/C2xC62C2 ⊆ Aut C3144C3.1(Dic3xC2xC6)432,372
C3.2(Dic3xC2xC6) = C22xC32:C12φ: Dic3xC2xC6/C2xC62C2 ⊆ Aut C3144C3.2(Dic3xC2xC6)432,376
C3.3(Dic3xC2xC6) = C22xC9:C12φ: Dic3xC2xC6/C2xC62C2 ⊆ Aut C3144C3.3(Dic3xC2xC6)432,378
C3.4(Dic3xC2xC6) = Dic3xC2xC18central extension (φ=1)144C3.4(Dic3xC2xC6)432,373

׿
x
:
Z
F
o
wr
Q
<