Extensions 1→N→G→Q→1 with N=C3xC6 and Q=C24

Direct product G=NxQ with N=C3xC6 and Q=C24
dρLabelID
C3xC6xC24432C3xC6xC24432,515

Semidirect products G=N:Q with N=C3xC6 and Q=C24
extensionφ:Q→Aut NdρLabelID
(C3xC6):C24 = C6xF9φ: C24/C3C8 ⊆ Aut C3xC6488(C3xC6):C24432,751
(C3xC6):2C24 = C2xHe3:3C8φ: C24/C4C6 ⊆ Aut C3xC6144(C3xC6):2C24432,136
(C3xC6):3C24 = C6xC32:2C8φ: C24/C6C4 ⊆ Aut C3xC648(C3xC6):3C24432,632
(C3xC6):4C24 = C2xC8xHe3φ: C24/C8C3 ⊆ Aut C3xC6144(C3xC6):4C24432,210
(C3xC6):5C24 = C3xC6xC3:C8φ: C24/C12C2 ⊆ Aut C3xC6144(C3xC6):5C24432,469
(C3xC6):6C24 = C6xC32:4C8φ: C24/C12C2 ⊆ Aut C3xC6144(C3xC6):6C24432,485

Non-split extensions G=N.Q with N=C3xC6 and Q=C24
extensionφ:Q→Aut NdρLabelID
(C3xC6).C24 = C3xC2.F9φ: C24/C3C8 ⊆ Aut C3xC6488(C3xC6).C24432,565
(C3xC6).2C24 = He3:3C16φ: C24/C4C6 ⊆ Aut C3xC61446(C3xC6).2C24432,30
(C3xC6).3C24 = C3xC32:2C16φ: C24/C6C4 ⊆ Aut C3xC6484(C3xC6).3C24432,412
(C3xC6).4C24 = C16xHe3φ: C24/C8C3 ⊆ Aut C3xC61443(C3xC6).4C24432,35
(C3xC6).5C24 = C16x3- 1+2φ: C24/C8C3 ⊆ Aut C3xC61443(C3xC6).5C24432,36
(C3xC6).6C24 = C2xC8x3- 1+2φ: C24/C8C3 ⊆ Aut C3xC6144(C3xC6).6C24432,211
(C3xC6).7C24 = C9xC3:C16φ: C24/C12C2 ⊆ Aut C3xC61442(C3xC6).7C24432,29
(C3xC6).8C24 = C18xC3:C8φ: C24/C12C2 ⊆ Aut C3xC6144(C3xC6).8C24432,126
(C3xC6).9C24 = C32xC3:C16φ: C24/C12C2 ⊆ Aut C3xC6144(C3xC6).9C24432,229
(C3xC6).10C24 = C3xC24.S3φ: C24/C12C2 ⊆ Aut C3xC6144(C3xC6).10C24432,230

׿
x
:
Z
F
o
wr
Q
<