Extensions 1→N→G→Q→1 with N=C3 and Q=D4×C3⋊S3

Direct product G=N×Q with N=C3 and Q=D4×C3⋊S3
dρLabelID
C3×D4×C3⋊S372C3xD4xC3:S3432,714

Semidirect products G=N:Q with N=C3 and Q=D4×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C31(D4×C3⋊S3) = C3⋊S3×D12φ: D4×C3⋊S3/C4×C3⋊S3C2 ⊆ Aut C372C3:1(D4xC3:S3)432,672
C32(D4×C3⋊S3) = C12⋊S32φ: D4×C3⋊S3/C12⋊S3C2 ⊆ Aut C372C3:2(D4xC3:S3)432,673
C33(D4×C3⋊S3) = C6223D6φ: D4×C3⋊S3/C327D4C2 ⊆ Aut C336C3:3(D4xC3:S3)432,686
C34(D4×C3⋊S3) = D4×C33⋊C2φ: D4×C3⋊S3/D4×C32C2 ⊆ Aut C3108C3:4(D4xC3:S3)432,724
C35(D4×C3⋊S3) = C3⋊S3×C3⋊D4φ: D4×C3⋊S3/C22×C3⋊S3C2 ⊆ Aut C372C3:5(D4xC3:S3)432,685

Non-split extensions G=N.Q with N=C3 and Q=D4×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C3.(D4×C3⋊S3) = D4×C9⋊S3φ: D4×C3⋊S3/D4×C32C2 ⊆ Aut C3108C3.(D4xC3:S3)432,388
C3.2(D4×C3⋊S3) = D4×He3⋊C2central stem extension (φ=1)366C3.2(D4xC3:S3)432,390

׿
×
𝔽