Extensions 1→N→G→Q→1 with N=Dic6 and Q=C3⋊S3

Direct product G=N×Q with N=Dic6 and Q=C3⋊S3
dρLabelID
C3⋊S3×Dic6144C3:S3xDic6432,663

Semidirect products G=N:Q with N=Dic6 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
Dic61(C3⋊S3) = C3315SD16φ: C3⋊S3/C32C2 ⊆ Out Dic672Dic6:1(C3:S3)432,442
Dic62(C3⋊S3) = C3313SD16φ: C3⋊S3/C32C2 ⊆ Out Dic6144Dic6:2(C3:S3)432,440
Dic63(C3⋊S3) = C12.39S32φ: C3⋊S3/C32C2 ⊆ Out Dic672Dic6:3(C3:S3)432,664
Dic64(C3⋊S3) = C329(S3×Q8)φ: C3⋊S3/C32C2 ⊆ Out Dic672Dic6:4(C3:S3)432,666
Dic65(C3⋊S3) = C12.40S32φ: trivial image72Dic6:5(C3:S3)432,665

Non-split extensions G=N.Q with N=Dic6 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
Dic6.1(C3⋊S3) = C337Q16φ: C3⋊S3/C32C2 ⊆ Out Dic6144Dic6.1(C3:S3)432,446
Dic6.2(C3⋊S3) = C336Q16φ: C3⋊S3/C32C2 ⊆ Out Dic6144Dic6.2(C3:S3)432,445

׿
×
𝔽