extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C3×Dic3) = C3×C4.Dic9 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 72 | 2 | C12.1(C3xDic3) | 432,125 |
C12.2(C3×Dic3) = C3×C4⋊Dic9 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.2(C3xDic3) | 432,130 |
C12.3(C3×Dic3) = He3⋊7M4(2) | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 72 | 6 | C12.3(C3xDic3) | 432,137 |
C12.4(C3×Dic3) = C62.20D6 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.4(C3xDic3) | 432,140 |
C12.5(C3×Dic3) = C36.C12 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 72 | 6 | C12.5(C3xDic3) | 432,143 |
C12.6(C3×Dic3) = C36⋊C12 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.6(C3xDic3) | 432,146 |
C12.7(C3×Dic3) = C3×C12.58D6 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 72 | | C12.7(C3xDic3) | 432,486 |
C12.8(C3×Dic3) = C3×C9⋊C16 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | 2 | C12.8(C3xDic3) | 432,28 |
C12.9(C3×Dic3) = He3⋊3C16 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | 6 | C12.9(C3xDic3) | 432,30 |
C12.10(C3×Dic3) = C9⋊C48 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | 6 | C12.10(C3xDic3) | 432,31 |
C12.11(C3×Dic3) = C6×C9⋊C8 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.11(C3xDic3) | 432,124 |
C12.12(C3×Dic3) = C12×Dic9 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.12(C3xDic3) | 432,128 |
C12.13(C3×Dic3) = C2×He3⋊3C8 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.13(C3xDic3) | 432,136 |
C12.14(C3×Dic3) = C4×C32⋊C12 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.14(C3xDic3) | 432,138 |
C12.15(C3×Dic3) = C2×C9⋊C24 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.15(C3xDic3) | 432,142 |
C12.16(C3×Dic3) = C4×C9⋊C12 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.16(C3xDic3) | 432,144 |
C12.17(C3×Dic3) = C3×C24.S3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.17(C3xDic3) | 432,230 |
C12.18(C3×Dic3) = C6×C32⋊4C8 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.18(C3xDic3) | 432,485 |
C12.19(C3×Dic3) = C9×C4.Dic3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 72 | 2 | C12.19(C3xDic3) | 432,127 |
C12.20(C3×Dic3) = C9×C4⋊Dic3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 144 | | C12.20(C3xDic3) | 432,133 |
C12.21(C3×Dic3) = C32×C4.Dic3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C12 | 72 | | C12.21(C3xDic3) | 432,470 |
C12.22(C3×Dic3) = C9×C3⋊C16 | central extension (φ=1) | 144 | 2 | C12.22(C3xDic3) | 432,29 |
C12.23(C3×Dic3) = C18×C3⋊C8 | central extension (φ=1) | 144 | | C12.23(C3xDic3) | 432,126 |
C12.24(C3×Dic3) = Dic3×C36 | central extension (φ=1) | 144 | | C12.24(C3xDic3) | 432,131 |
C12.25(C3×Dic3) = C32×C3⋊C16 | central extension (φ=1) | 144 | | C12.25(C3xDic3) | 432,229 |
C12.26(C3×Dic3) = C3×C6×C3⋊C8 | central extension (φ=1) | 144 | | C12.26(C3xDic3) | 432,469 |