Extensions 1→N→G→Q→1 with N=Q8xC3xC9 and Q=C2

Direct product G=NxQ with N=Q8xC3xC9 and Q=C2
dρLabelID
Q8xC3xC18432Q8xC3xC18432,406

Semidirect products G=N:Q with N=Q8xC3xC9 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC3xC9):1C2 = C3xQ8:2D9φ: C2/C1C2 ⊆ Out Q8xC3xC91444(Q8xC3xC9):1C2432,157
(Q8xC3xC9):2C2 = C36.20D6φ: C2/C1C2 ⊆ Out Q8xC3xC9216(Q8xC3xC9):2C2432,195
(Q8xC3xC9):3C2 = C3xQ8xD9φ: C2/C1C2 ⊆ Out Q8xC3xC91444(Q8xC3xC9):3C2432,364
(Q8xC3xC9):4C2 = C3xQ8:3D9φ: C2/C1C2 ⊆ Out Q8xC3xC91444(Q8xC3xC9):4C2432,365
(Q8xC3xC9):5C2 = Q8xC9:S3φ: C2/C1C2 ⊆ Out Q8xC3xC9216(Q8xC3xC9):5C2432,392
(Q8xC3xC9):6C2 = C36.29D6φ: C2/C1C2 ⊆ Out Q8xC3xC9216(Q8xC3xC9):6C2432,393
(Q8xC3xC9):7C2 = C9xQ8:2S3φ: C2/C1C2 ⊆ Out Q8xC3xC91444(Q8xC3xC9):7C2432,158
(Q8xC3xC9):8C2 = SD16xC3xC9φ: C2/C1C2 ⊆ Out Q8xC3xC9216(Q8xC3xC9):8C2432,218
(Q8xC3xC9):9C2 = S3xQ8xC9φ: C2/C1C2 ⊆ Out Q8xC3xC91444(Q8xC3xC9):9C2432,366
(Q8xC3xC9):10C2 = C9xQ8:3S3φ: C2/C1C2 ⊆ Out Q8xC3xC91444(Q8xC3xC9):10C2432,367
(Q8xC3xC9):11C2 = C4oD4xC3xC9φ: trivial image216(Q8xC3xC9):11C2432,409

Non-split extensions G=N.Q with N=Q8xC3xC9 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC3xC9).1C2 = C3xC9:Q16φ: C2/C1C2 ⊆ Out Q8xC3xC91444(Q8xC3xC9).1C2432,156
(Q8xC3xC9).2C2 = C36.19D6φ: C2/C1C2 ⊆ Out Q8xC3xC9432(Q8xC3xC9).2C2432,194
(Q8xC3xC9).3C2 = C9xC3:Q16φ: C2/C1C2 ⊆ Out Q8xC3xC91444(Q8xC3xC9).3C2432,159
(Q8xC3xC9).4C2 = Q16xC3xC9φ: C2/C1C2 ⊆ Out Q8xC3xC9432(Q8xC3xC9).4C2432,221

׿
x
:
Z
F
o
wr
Q
<