Extensions 1→N→G→Q→1 with N=C3 and Q=D4xC3xC6

Direct product G=NxQ with N=C3 and Q=D4xC3xC6
dρLabelID
D4xC32xC6216D4xC3^2xC6432,731

Semidirect products G=N:Q with N=C3 and Q=D4xC3xC6
extensionφ:Q→Aut NdρLabelID
C3:1(D4xC3xC6) = C3xC6xD12φ: D4xC3xC6/C6xC12C2 ⊆ Aut C3144C3:1(D4xC3xC6)432,702
C3:2(D4xC3xC6) = S3xD4xC32φ: D4xC3xC6/D4xC32C2 ⊆ Aut C372C3:2(D4xC3xC6)432,704
C3:3(D4xC3xC6) = C3xC6xC3:D4φ: D4xC3xC6/C2xC62C2 ⊆ Aut C372C3:3(D4xC3xC6)432,709

Non-split extensions G=N.Q with N=C3 and Q=D4xC3xC6
extensionφ:Q→Aut NdρLabelID
C3.1(D4xC3xC6) = D4xC3xC18central extension (φ=1)216C3.1(D4xC3xC6)432,403
C3.2(D4xC3xC6) = C2xD4xHe3central stem extension (φ=1)72C3.2(D4xC3xC6)432,404
C3.3(D4xC3xC6) = C2xD4x3- 1+2central stem extension (φ=1)72C3.3(D4xC3xC6)432,405

׿
x
:
Z
F
o
wr
Q
<