Extensions 1→N→G→Q→1 with N=C5×Dic11 and Q=C2

Direct product G=N×Q with N=C5×Dic11 and Q=C2
dρLabelID
C10×Dic11440C10xDic11440,27

Semidirect products G=N:Q with N=C5×Dic11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic11)⋊1C2 = D5×Dic11φ: C2/C1C2 ⊆ Out C5×Dic112204-(C5xDic11):1C2440,18
(C5×Dic11)⋊2C2 = D552C4φ: C2/C1C2 ⊆ Out C5×Dic112204+(C5xDic11):2C2440,19
(C5×Dic11)⋊3C2 = C11⋊D20φ: C2/C1C2 ⊆ Out C5×Dic112204+(C5xDic11):3C2440,22
(C5×Dic11)⋊4C2 = C5×C11⋊D4φ: C2/C1C2 ⊆ Out C5×Dic112202(C5xDic11):4C2440,28
(C5×Dic11)⋊5C2 = C20×D11φ: trivial image2202(C5xDic11):5C2440,25

Non-split extensions G=N.Q with N=C5×Dic11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic11).1C2 = C55⋊Q8φ: C2/C1C2 ⊆ Out C5×Dic114404-(C5xDic11).1C2440,23
(C5×Dic11).2C2 = C5×Dic22φ: C2/C1C2 ⊆ Out C5×Dic114402(C5xDic11).2C2440,24

׿
×
𝔽