Extensions 1→N→G→Q→1 with N=C10 and Q=D22

Direct product G=N×Q with N=C10 and Q=D22
dρLabelID
C2×C10×D11220C2xC10xD11440,48

Semidirect products G=N:Q with N=C10 and Q=D22
extensionφ:Q→Aut NdρLabelID
C101D22 = C2×D5×D11φ: D22/D11C2 ⊆ Aut C101104+C10:1D22440,47
C102D22 = C22×D55φ: D22/C22C2 ⊆ Aut C10220C10:2D22440,50

Non-split extensions G=N.Q with N=C10 and Q=D22
extensionφ:Q→Aut NdρLabelID
C10.1D22 = Dic5×D11φ: D22/D11C2 ⊆ Aut C102204-C10.1D22440,17
C10.2D22 = D5×Dic11φ: D22/D11C2 ⊆ Aut C102204-C10.2D22440,18
C10.3D22 = D552C4φ: D22/D11C2 ⊆ Aut C102204+C10.3D22440,19
C10.4D22 = C55⋊D4φ: D22/D11C2 ⊆ Aut C102204-C10.4D22440,20
C10.5D22 = C5⋊D44φ: D22/D11C2 ⊆ Aut C102204+C10.5D22440,21
C10.6D22 = C11⋊D20φ: D22/D11C2 ⊆ Aut C102204+C10.6D22440,22
C10.7D22 = C55⋊Q8φ: D22/D11C2 ⊆ Aut C104404-C10.7D22440,23
C10.8D22 = Dic110φ: D22/C22C2 ⊆ Aut C104402-C10.8D22440,34
C10.9D22 = C4×D55φ: D22/C22C2 ⊆ Aut C102202C10.9D22440,35
C10.10D22 = D220φ: D22/C22C2 ⊆ Aut C102202+C10.10D22440,36
C10.11D22 = C2×Dic55φ: D22/C22C2 ⊆ Aut C10440C10.11D22440,37
C10.12D22 = C557D4φ: D22/C22C2 ⊆ Aut C102202C10.12D22440,38
C10.13D22 = C5×Dic22central extension (φ=1)4402C10.13D22440,24
C10.14D22 = C20×D11central extension (φ=1)2202C10.14D22440,25
C10.15D22 = C5×D44central extension (φ=1)2202C10.15D22440,26
C10.16D22 = C10×Dic11central extension (φ=1)440C10.16D22440,27
C10.17D22 = C5×C11⋊D4central extension (φ=1)2202C10.17D22440,28

׿
×
𝔽