Extensions 1→N→G→Q→1 with N=C10 and Q=C2×C22

Direct product G=N×Q with N=C10 and Q=C2×C22
dρLabelID
C22×C110440C2^2xC110440,51

Semidirect products G=N:Q with N=C10 and Q=C2×C22
extensionφ:Q→Aut NdρLabelID
C10⋊(C2×C22) = D5×C2×C22φ: C2×C22/C22C2 ⊆ Aut C10220C10:(C2xC22)440,49

Non-split extensions G=N.Q with N=C10 and Q=C2×C22
extensionφ:Q→Aut NdρLabelID
C10.1(C2×C22) = C11×Dic10φ: C2×C22/C22C2 ⊆ Aut C104402C10.1(C2xC22)440,29
C10.2(C2×C22) = D5×C44φ: C2×C22/C22C2 ⊆ Aut C102202C10.2(C2xC22)440,30
C10.3(C2×C22) = C11×D20φ: C2×C22/C22C2 ⊆ Aut C102202C10.3(C2xC22)440,31
C10.4(C2×C22) = Dic5×C22φ: C2×C22/C22C2 ⊆ Aut C10440C10.4(C2xC22)440,32
C10.5(C2×C22) = C11×C5⋊D4φ: C2×C22/C22C2 ⊆ Aut C102202C10.5(C2xC22)440,33
C10.6(C2×C22) = D4×C55central extension (φ=1)2202C10.6(C2xC22)440,40
C10.7(C2×C22) = Q8×C55central extension (φ=1)4402C10.7(C2xC22)440,41

׿
×
𝔽