Extensions 1→N→G→Q→1 with N=C2×D4 and Q=Dic7

Direct product G=N×Q with N=C2×D4 and Q=Dic7
dρLabelID
C2×D4×Dic7224C2xD4xDic7448,1248

Semidirect products G=N:Q with N=C2×D4 and Q=Dic7
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1Dic7 = (D4×C14)⋊C4φ: Dic7/C7C4 ⊆ Out C2×D4112(C2xD4):1Dic7448,94
(C2×D4)⋊2Dic7 = C423Dic7φ: Dic7/C7C4 ⊆ Out C2×D4564(C2xD4):2Dic7448,102
(C2×D4)⋊3Dic7 = C2×D4⋊Dic7φ: Dic7/C14C2 ⊆ Out C2×D4224(C2xD4):3Dic7448,748
(C2×D4)⋊4Dic7 = (D4×C14)⋊6C4φ: Dic7/C14C2 ⊆ Out C2×D4112(C2xD4):4Dic7448,749
(C2×D4)⋊5Dic7 = C2×C23⋊Dic7φ: Dic7/C14C2 ⊆ Out C2×D4112(C2xD4):5Dic7448,753
(C2×D4)⋊6Dic7 = C24.18D14φ: Dic7/C14C2 ⊆ Out C2×D4224(C2xD4):6Dic7448,754
(C2×D4)⋊7Dic7 = C24.19D14φ: Dic7/C14C2 ⊆ Out C2×D4224(C2xD4):7Dic7448,755
(C2×D4)⋊8Dic7 = C2×D42Dic7φ: Dic7/C14C2 ⊆ Out C2×D4112(C2xD4):8Dic7448,769
(C2×D4)⋊9Dic7 = (D4×C14)⋊9C4φ: Dic7/C14C2 ⊆ Out C2×D41124(C2xD4):9Dic7448,770
(C2×D4)⋊10Dic7 = (D4×C14)⋊10C4φ: Dic7/C14C2 ⊆ Out C2×D41124(C2xD4):10Dic7448,774
(C2×D4)⋊11Dic7 = C24.38D14φ: Dic7/C14C2 ⊆ Out C2×D4112(C2xD4):11Dic7448,1251

Non-split extensions G=N.Q with N=C2×D4 and Q=Dic7
extensionφ:Q→Out NdρLabelID
(C2×D4).1Dic7 = C42.7D14φ: Dic7/C7C4 ⊆ Out C2×D4224(C2xD4).1Dic7448,97
(C2×D4).2Dic7 = C42.Dic7φ: Dic7/C7C4 ⊆ Out C2×D41124(C2xD4).2Dic7448,99
(C2×D4).3Dic7 = C28.9D8φ: Dic7/C7C4 ⊆ Out C2×D4224(C2xD4).3Dic7448,101
(C2×D4).4Dic7 = C28.57D8φ: Dic7/C14C2 ⊆ Out C2×D4224(C2xD4).4Dic7448,91
(C2×D4).5Dic7 = C42.47D14φ: Dic7/C14C2 ⊆ Out C2×D4224(C2xD4).5Dic7448,545
(C2×D4).6Dic7 = C283M4(2)φ: Dic7/C14C2 ⊆ Out C2×D4224(C2xD4).6Dic7448,546
(C2×D4).7Dic7 = C2×C28.D4φ: Dic7/C14C2 ⊆ Out C2×D4112(C2xD4).7Dic7448,750
(C2×D4).8Dic7 = (D4×C14).11C4φ: Dic7/C14C2 ⊆ Out C2×D4224(C2xD4).8Dic7448,768
(C2×D4).9Dic7 = (D4×C14).16C4φ: Dic7/C14C2 ⊆ Out C2×D41124(C2xD4).9Dic7448,771
(C2×D4).10Dic7 = C28.76C24φ: Dic7/C14C2 ⊆ Out C2×D41124(C2xD4).10Dic7448,1272
(C2×D4).11Dic7 = D4×C7⋊C8φ: trivial image224(C2xD4).11Dic7448,544
(C2×D4).12Dic7 = C2×Q8.Dic7φ: trivial image224(C2xD4).12Dic7448,1271

׿
×
𝔽