Extensions 1→N→G→Q→1 with N=C2xD4 and Q=C28

Direct product G=NxQ with N=C2xD4 and Q=C28
dρLabelID
D4xC2xC28224D4xC2xC28448,1298

Semidirect products G=N:Q with N=C2xD4 and Q=C28
extensionφ:Q→Out NdρLabelID
(C2xD4):1C28 = C7xC22.SD16φ: C28/C7C4 ⊆ Out C2xD4112(C2xD4):1C28448,131
(C2xD4):2C28 = C7xC42:C4φ: C28/C7C4 ⊆ Out C2xD4564(C2xD4):2C28448,157
(C2xD4):3C28 = C7xC23.23D4φ: C28/C14C2 ⊆ Out C2xD4224(C2xD4):3C28448,794
(C2xD4):4C28 = C7xC24.3C22φ: C28/C14C2 ⊆ Out C2xD4224(C2xD4):4C28448,798
(C2xD4):5C28 = C14xC23:C4φ: C28/C14C2 ⊆ Out C2xD4112(C2xD4):5C28448,817
(C2xD4):6C28 = C7xC23.C23φ: C28/C14C2 ⊆ Out C2xD41124(C2xD4):6C28448,818
(C2xD4):7C28 = C14xD4:C4φ: C28/C14C2 ⊆ Out C2xD4224(C2xD4):7C28448,822
(C2xD4):8C28 = C7xC23.37D4φ: C28/C14C2 ⊆ Out C2xD4112(C2xD4):8C28448,826
(C2xD4):9C28 = C14xC4wrC2φ: C28/C14C2 ⊆ Out C2xD4112(C2xD4):9C28448,828
(C2xD4):10C28 = C7xC42:C22φ: C28/C14C2 ⊆ Out C2xD41124(C2xD4):10C28448,829
(C2xD4):11C28 = C7xC22.11C24φ: C28/C14C2 ⊆ Out C2xD4112(C2xD4):11C28448,1301

Non-split extensions G=N.Q with N=C2xD4 and Q=C28
extensionφ:Q→Out NdρLabelID
(C2xD4).1C28 = C7xC42.C22φ: C28/C7C4 ⊆ Out C2xD4224(C2xD4).1C28448,133
(C2xD4).2C28 = C7xC4.D8φ: C28/C7C4 ⊆ Out C2xD4224(C2xD4).2C28448,135
(C2xD4).3C28 = C7xC42.C4φ: C28/C7C4 ⊆ Out C2xD41124(C2xD4).3C28448,159
(C2xD4).4C28 = C7xD4:C8φ: C28/C14C2 ⊆ Out C2xD4224(C2xD4).4C28448,129
(C2xD4).5C28 = C7x(C22xC8):C2φ: C28/C14C2 ⊆ Out C2xD4224(C2xD4).5C28448,816
(C2xD4).6C28 = C14xC4.D4φ: C28/C14C2 ⊆ Out C2xD4112(C2xD4).6C28448,819
(C2xD4).7C28 = C7xM4(2).8C22φ: C28/C14C2 ⊆ Out C2xD41124(C2xD4).7C28448,821
(C2xD4).8C28 = C7xC8:9D4φ: C28/C14C2 ⊆ Out C2xD4224(C2xD4).8C28448,843
(C2xD4).9C28 = C7xC8:6D4φ: C28/C14C2 ⊆ Out C2xD4224(C2xD4).9C28448,844
(C2xD4).10C28 = C7xQ8oM4(2)φ: C28/C14C2 ⊆ Out C2xD41124(C2xD4).10C28448,1351
(C2xD4).11C28 = D4xC56φ: trivial image224(C2xD4).11C28448,842
(C2xD4).12C28 = C14xC8oD4φ: trivial image224(C2xD4).12C28448,1350

׿
x
:
Z
F
o
wr
Q
<