Extensions 1→N→G→Q→1 with N=C4 and Q=D4.D7

Direct product G=N×Q with N=C4 and Q=D4.D7
dρLabelID
C4×D4.D7224C4xD4.D7448,551

Semidirect products G=N:Q with N=C4 and Q=D4.D7
extensionφ:Q→Aut NdρLabelID
C41(D4.D7) = C284SD16φ: D4.D7/C7⋊C8C2 ⊆ Aut C4224C4:1(D4.D7)448,610
C42(D4.D7) = Dic149D4φ: D4.D7/Dic14C2 ⊆ Aut C4224C4:2(D4.D7)448,609
C43(D4.D7) = D4.2D28φ: D4.D7/C7×D4C2 ⊆ Aut C4224C4:3(D4.D7)448,553

Non-split extensions G=N.Q with N=C4 and Q=D4.D7
extensionφ:Q→Aut NdρLabelID
C4.1(D4.D7) = C14.SD32φ: D4.D7/C7⋊C8C2 ⊆ Aut C4224C4.1(D4.D7)448,119
C4.2(D4.D7) = C14.Q32φ: D4.D7/C7⋊C8C2 ⊆ Aut C4448C4.2(D4.D7)448,121
C4.3(D4.D7) = C28.16D8φ: D4.D7/C7⋊C8C2 ⊆ Aut C4224C4.3(D4.D7)448,604
C4.4(D4.D7) = C28.SD16φ: D4.D7/C7⋊C8C2 ⊆ Aut C4448C4.4(D4.D7)448,613
C4.5(D4.D7) = C28.11Q16φ: D4.D7/C7⋊C8C2 ⊆ Aut C4448C4.5(D4.D7)448,627
C4.6(D4.D7) = C28.9D8φ: D4.D7/Dic14C2 ⊆ Aut C4224C4.6(D4.D7)448,101
C4.7(D4.D7) = C28.10D8φ: D4.D7/Dic14C2 ⊆ Aut C4448C4.7(D4.D7)448,104
C4.8(D4.D7) = Dic146Q8φ: D4.D7/Dic14C2 ⊆ Aut C4448C4.8(D4.D7)448,628
C4.9(D4.D7) = C4.Dic28φ: D4.D7/C7×D4C2 ⊆ Aut C4448C4.9(D4.D7)448,38
C4.10(D4.D7) = C28.2D8φ: D4.D7/C7×D4C2 ⊆ Aut C4448C4.10(D4.D7)448,43
C4.11(D4.D7) = C8.Dic14φ: D4.D7/C7×D4C2 ⊆ Aut C41124C4.11(D4.D7)448,51
C4.12(D4.D7) = D82Dic7φ: D4.D7/C7×D4C2 ⊆ Aut C41124C4.12(D4.D7)448,123
C4.13(D4.D7) = C28.38SD16φ: D4.D7/C7×D4C2 ⊆ Aut C4224C4.13(D4.D7)448,542
C4.14(D4.D7) = C28.39SD16central extension (φ=1)448C4.14(D4.D7)448,37
C4.15(D4.D7) = Dic142C8central extension (φ=1)448C4.15(D4.D7)448,41
C4.16(D4.D7) = C28.57D8central extension (φ=1)224C4.16(D4.D7)448,91

׿
×
𝔽