Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4.Dic7

Direct product G=N×Q with N=C2 and Q=C2×C4.Dic7
dρLabelID
C22×C4.Dic7224C2^2xC4.Dic7448,1234


Non-split extensions G=N.Q with N=C2 and Q=C2×C4.Dic7
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4.Dic7) = C2×C42.D7central extension (φ=1)448C2.1(C2xC4.Dic7)448,455
C2.2(C2×C4.Dic7) = C4×C4.Dic7central extension (φ=1)224C2.2(C2xC4.Dic7)448,456
C2.3(C2×C4.Dic7) = C2×C28⋊C8central extension (φ=1)448C2.3(C2xC4.Dic7)448,457
C2.4(C2×C4.Dic7) = C42.6Dic7central extension (φ=1)224C2.4(C2xC4.Dic7)448,459
C2.5(C2×C4.Dic7) = C2×C28.55D4central extension (φ=1)224C2.5(C2xC4.Dic7)448,740
C2.6(C2×C4.Dic7) = C287M4(2)central stem extension (φ=1)224C2.6(C2xC4.Dic7)448,458
C2.7(C2×C4.Dic7) = C42.7Dic7central stem extension (φ=1)224C2.7(C2xC4.Dic7)448,460
C2.8(C2×C4.Dic7) = C42.47D14central stem extension (φ=1)224C2.8(C2xC4.Dic7)448,545
C2.9(C2×C4.Dic7) = C283M4(2)central stem extension (φ=1)224C2.9(C2xC4.Dic7)448,546
C2.10(C2×C4.Dic7) = C42.210D14central stem extension (φ=1)448C2.10(C2xC4.Dic7)448,558
C2.11(C2×C4.Dic7) = C24.4Dic7central stem extension (φ=1)112C2.11(C2xC4.Dic7)448,741

׿
×
𝔽