Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4⋊Dic7

Direct product G=N×Q with N=C2 and Q=C2×C4⋊Dic7
dρLabelID
C22×C4⋊Dic7448C2^2xC4:Dic7448,1238


Non-split extensions G=N.Q with N=C2 and Q=C2×C4⋊Dic7
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4⋊Dic7) = C2×C28⋊C8central extension (φ=1)448C2.1(C2xC4:Dic7)448,457
C2.2(C2×C4⋊Dic7) = C4×C4⋊Dic7central extension (φ=1)448C2.2(C2xC4:Dic7)448,468
C2.3(C2×C4⋊Dic7) = C2×C14.C42central extension (φ=1)448C2.3(C2xC4:Dic7)448,742
C2.4(C2×C4⋊Dic7) = C287M4(2)central stem extension (φ=1)224C2.4(C2xC4:Dic7)448,458
C2.5(C2×C4⋊Dic7) = C428Dic7central stem extension (φ=1)448C2.5(C2xC4:Dic7)448,469
C2.6(C2×C4⋊Dic7) = C429Dic7central stem extension (φ=1)448C2.6(C2xC4:Dic7)448,470
C2.7(C2×C4⋊Dic7) = C24.47D14central stem extension (φ=1)224C2.7(C2xC4:Dic7)448,484
C2.8(C2×C4⋊Dic7) = C4⋊(C4⋊Dic7)central stem extension (φ=1)448C2.8(C2xC4:Dic7)448,519
C2.9(C2×C4⋊Dic7) = C42.43D14central stem extension (φ=1)224C2.9(C2xC4:Dic7)448,533
C2.10(C2×C4⋊Dic7) = C2×C8⋊Dic7central stem extension (φ=1)448C2.10(C2xC4:Dic7)448,638
C2.11(C2×C4⋊Dic7) = C2×C561C4central stem extension (φ=1)448C2.11(C2xC4:Dic7)448,639
C2.12(C2×C4⋊Dic7) = C23.22D28central stem extension (φ=1)224C2.12(C2xC4:Dic7)448,640
C2.13(C2×C4⋊Dic7) = C2×C56.C4central stem extension (φ=1)224C2.13(C2xC4:Dic7)448,641
C2.14(C2×C4⋊Dic7) = C23.47D28central stem extension (φ=1)224C2.14(C2xC4:Dic7)448,655
C2.15(C2×C4⋊Dic7) = M4(2).Dic7central stem extension (φ=1)1124C2.15(C2xC4:Dic7)448,659
C2.16(C2×C4⋊Dic7) = C23.27D28central stem extension (φ=1)224C2.16(C2xC4:Dic7)448,746

׿
×
𝔽