Extensions 1→N→G→Q→1 with N=C4 and Q=C7xSD16

Direct product G=NxQ with N=C4 and Q=C7xSD16
dρLabelID
SD16xC28224SD16xC28448,846

Semidirect products G=N:Q with N=C4 and Q=C7xSD16
extensionφ:Q→Aut NdρLabelID
C4:1(C7xSD16) = C7xC8:5D4φ: C7xSD16/C56C2 ⊆ Aut C4224C4:1(C7xSD16)448,900
C4:2(C7xSD16) = C7xD4.D4φ: C7xSD16/C7xD4C2 ⊆ Aut C4224C4:2(C7xSD16)448,869
C4:3(C7xSD16) = C7xC4:SD16φ: C7xSD16/C7xQ8C2 ⊆ Aut C4224C4:3(C7xSD16)448,868

Non-split extensions G=N.Q with N=C4 and Q=C7xSD16
extensionφ:Q→Aut NdρLabelID
C4.1(C7xSD16) = C7xC2.D16φ: C7xSD16/C56C2 ⊆ Aut C4224C4.1(C7xSD16)448,161
C4.2(C7xSD16) = C7xC2.Q32φ: C7xSD16/C56C2 ⊆ Aut C4448C4.2(C7xSD16)448,162
C4.3(C7xSD16) = C7xC4.4D8φ: C7xSD16/C56C2 ⊆ Aut C4224C4.3(C7xSD16)448,894
C4.4(C7xSD16) = C7xC4.SD16φ: C7xSD16/C56C2 ⊆ Aut C4448C4.4(C7xSD16)448,895
C4.5(C7xSD16) = C7xC8:3Q8φ: C7xSD16/C56C2 ⊆ Aut C4448C4.5(C7xSD16)448,906
C4.6(C7xSD16) = C7xC4.10D8φ: C7xSD16/C7xD4C2 ⊆ Aut C4448C4.6(C7xSD16)448,136
C4.7(C7xSD16) = C7xC4.6Q16φ: C7xSD16/C7xD4C2 ⊆ Aut C4448C4.7(C7xSD16)448,137
C4.8(C7xSD16) = C7xD8:2C4φ: C7xSD16/C7xD4C2 ⊆ Aut C41124C4.8(C7xSD16)448,164
C4.9(C7xSD16) = C7xC8.Q8φ: C7xSD16/C7xD4C2 ⊆ Aut C41124C4.9(C7xSD16)448,169
C4.10(C7xSD16) = C7xD4:2Q8φ: C7xSD16/C7xD4C2 ⊆ Aut C4224C4.10(C7xSD16)448,884
C4.11(C7xSD16) = C7xC4.D8φ: C7xSD16/C7xQ8C2 ⊆ Aut C4224C4.11(C7xSD16)448,135
C4.12(C7xSD16) = C7xQ8:Q8φ: C7xSD16/C7xQ8C2 ⊆ Aut C4448C4.12(C7xSD16)448,883
C4.13(C7xSD16) = C7xD4:C8central extension (φ=1)224C4.13(C7xSD16)448,129
C4.14(C7xSD16) = C7xQ8:C8central extension (φ=1)448C4.14(C7xSD16)448,130
C4.15(C7xSD16) = C7xC8:2C8central extension (φ=1)448C4.15(C7xSD16)448,138

׿
x
:
Z
F
o
wr
Q
<