extension | φ:Q→Out N | d | ρ | Label | ID |
(D4×C14)⋊1C4 = (D4×C14)⋊C4 | φ: C4/C1 → C4 ⊆ Out D4×C14 | 112 | | (D4xC14):1C4 | 448,94 |
(D4×C14)⋊2C4 = C42⋊3Dic7 | φ: C4/C1 → C4 ⊆ Out D4×C14 | 56 | 4 | (D4xC14):2C4 | 448,102 |
(D4×C14)⋊3C4 = C7×C22.SD16 | φ: C4/C1 → C4 ⊆ Out D4×C14 | 112 | | (D4xC14):3C4 | 448,131 |
(D4×C14)⋊4C4 = C7×C42⋊C4 | φ: C4/C1 → C4 ⊆ Out D4×C14 | 56 | 4 | (D4xC14):4C4 | 448,157 |
(D4×C14)⋊5C4 = C2×D4⋊Dic7 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):5C4 | 448,748 |
(D4×C14)⋊6C4 = (D4×C14)⋊6C4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):6C4 | 448,749 |
(D4×C14)⋊7C4 = C24.19D14 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):7C4 | 448,755 |
(D4×C14)⋊8C4 = C2×D4⋊2Dic7 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):8C4 | 448,769 |
(D4×C14)⋊9C4 = (D4×C14)⋊9C4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14):9C4 | 448,770 |
(D4×C14)⋊10C4 = (D4×C14)⋊10C4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14):10C4 | 448,774 |
(D4×C14)⋊11C4 = C2×D4×Dic7 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):11C4 | 448,1248 |
(D4×C14)⋊12C4 = C24.38D14 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):12C4 | 448,1251 |
(D4×C14)⋊13C4 = C2×C23⋊Dic7 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):13C4 | 448,753 |
(D4×C14)⋊14C4 = C24.18D14 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):14C4 | 448,754 |
(D4×C14)⋊15C4 = C7×C23.23D4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):15C4 | 448,794 |
(D4×C14)⋊16C4 = C7×C24.3C22 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):16C4 | 448,798 |
(D4×C14)⋊17C4 = C14×C23⋊C4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):17C4 | 448,817 |
(D4×C14)⋊18C4 = C7×C23.C23 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14):18C4 | 448,818 |
(D4×C14)⋊19C4 = C14×D4⋊C4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14):19C4 | 448,822 |
(D4×C14)⋊20C4 = C7×C23.37D4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):20C4 | 448,826 |
(D4×C14)⋊21C4 = C14×C4≀C2 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):21C4 | 448,828 |
(D4×C14)⋊22C4 = C7×C42⋊C22 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14):22C4 | 448,829 |
(D4×C14)⋊23C4 = C7×C22.11C24 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14):23C4 | 448,1301 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(D4×C14).1C4 = C42.7D14 | φ: C4/C1 → C4 ⊆ Out D4×C14 | 224 | | (D4xC14).1C4 | 448,97 |
(D4×C14).2C4 = C42.Dic7 | φ: C4/C1 → C4 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).2C4 | 448,99 |
(D4×C14).3C4 = C28.9D8 | φ: C4/C1 → C4 ⊆ Out D4×C14 | 224 | | (D4xC14).3C4 | 448,101 |
(D4×C14).4C4 = C7×C42.C22 | φ: C4/C1 → C4 ⊆ Out D4×C14 | 224 | | (D4xC14).4C4 | 448,133 |
(D4×C14).5C4 = C7×C4.D8 | φ: C4/C1 → C4 ⊆ Out D4×C14 | 224 | | (D4xC14).5C4 | 448,135 |
(D4×C14).6C4 = C7×C42.C4 | φ: C4/C1 → C4 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).6C4 | 448,159 |
(D4×C14).7C4 = C28.57D8 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).7C4 | 448,91 |
(D4×C14).8C4 = D4×C7⋊C8 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).8C4 | 448,544 |
(D4×C14).9C4 = C28⋊3M4(2) | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).9C4 | 448,546 |
(D4×C14).10C4 = C2×C28.D4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).10C4 | 448,750 |
(D4×C14).11C4 = (D4×C14).11C4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).11C4 | 448,768 |
(D4×C14).12C4 = C2×Q8.Dic7 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).12C4 | 448,1271 |
(D4×C14).13C4 = C28.76C24 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).13C4 | 448,1272 |
(D4×C14).14C4 = C7×D4⋊C8 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).14C4 | 448,129 |
(D4×C14).15C4 = C42.47D14 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).15C4 | 448,545 |
(D4×C14).16C4 = (D4×C14).16C4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).16C4 | 448,771 |
(D4×C14).17C4 = C7×(C22×C8)⋊C2 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).17C4 | 448,816 |
(D4×C14).18C4 = C14×C4.D4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | | (D4xC14).18C4 | 448,819 |
(D4×C14).19C4 = C7×M4(2).8C22 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).19C4 | 448,821 |
(D4×C14).20C4 = C7×C8⋊9D4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).20C4 | 448,843 |
(D4×C14).21C4 = C7×C8⋊6D4 | φ: C4/C2 → C2 ⊆ Out D4×C14 | 224 | | (D4xC14).21C4 | 448,844 |
(D4×C14).22C4 = C7×Q8○M4(2) | φ: C4/C2 → C2 ⊆ Out D4×C14 | 112 | 4 | (D4xC14).22C4 | 448,1351 |
(D4×C14).23C4 = D4×C56 | φ: trivial image | 224 | | (D4xC14).23C4 | 448,842 |
(D4×C14).24C4 = C14×C8○D4 | φ: trivial image | 224 | | (D4xC14).24C4 | 448,1350 |