Extensions 1→N→G→Q→1 with N=C2 and Q=D4⋊Dic7

Direct product G=N×Q with N=C2 and Q=D4⋊Dic7
dρLabelID
C2×D4⋊Dic7224C2xD4:Dic7448,748


Non-split extensions G=N.Q with N=C2 and Q=D4⋊Dic7
extensionφ:Q→Aut NdρLabelID
C2.1(D4⋊Dic7) = C28.C42central extension (φ=1)448C2.1(D4:Dic7)448,86
C2.2(D4⋊Dic7) = C28.57D8central extension (φ=1)224C2.2(D4:Dic7)448,91
C2.3(D4⋊Dic7) = (D4×C14)⋊C4central stem extension (φ=1)112C2.3(D4:Dic7)448,94
C2.4(D4⋊Dic7) = C28.9D8central stem extension (φ=1)224C2.4(D4:Dic7)448,101
C2.5(D4⋊Dic7) = C28.10D8central stem extension (φ=1)448C2.5(D4:Dic7)448,104
C2.6(D4⋊Dic7) = C14.SD32central stem extension (φ=1)224C2.6(D4:Dic7)448,119
C2.7(D4⋊Dic7) = D8.Dic7central stem extension (φ=1)1124C2.7(D4:Dic7)448,120
C2.8(D4⋊Dic7) = C14.Q32central stem extension (φ=1)448C2.8(D4:Dic7)448,121
C2.9(D4⋊Dic7) = Q16.Dic7central stem extension (φ=1)2244C2.9(D4:Dic7)448,122
C2.10(D4⋊Dic7) = D82Dic7central stem extension (φ=1)1124C2.10(D4:Dic7)448,123
C2.11(D4⋊Dic7) = C28.58D8central stem extension (φ=1)2244C2.11(D4:Dic7)448,124

׿
×
𝔽