Extensions 1→N→G→Q→1 with N=C8⋊D7 and Q=C4

Direct product G=N×Q with N=C8⋊D7 and Q=C4
dρLabelID
C4×C8⋊D7224C4xC8:D7448,221

Semidirect products G=N:Q with N=C8⋊D7 and Q=C4
extensionφ:Q→Out NdρLabelID
C8⋊D71C4 = C8⋊(C4×D7)φ: C4/C2C2 ⊆ Out C8⋊D7224C8:D7:1C4448,395
C8⋊D72C4 = C56⋊(C2×C4)φ: C4/C2C2 ⊆ Out C8⋊D7224C8:D7:2C4448,415
C8⋊D73C4 = Dic7.C42φ: C4/C2C2 ⊆ Out C8⋊D7224C8:D7:3C4448,241
C8⋊D74C4 = D14.4C42φ: C4/C2C2 ⊆ Out C8⋊D7224C8:D7:4C4448,242
C8⋊D75C4 = D14.C42φ: trivial image224C8:D7:5C4448,223

Non-split extensions G=N.Q with N=C8⋊D7 and Q=C4
extensionφ:Q→Out NdρLabelID
C8⋊D7.1C4 = M4(2).25D14φ: C4/C2C2 ⊆ Out C8⋊D71124C8:D7.1C4448,427
C8⋊D7.2C4 = C16.12D14φ: C4/C2C2 ⊆ Out C8⋊D72244C8:D7.2C4448,441
C8⋊D7.3C4 = D28.4C8φ: trivial image2242C8:D7.3C4448,435

׿
×
𝔽