Extensions 1→N→G→Q→1 with N=C2 and Q=D14.D4

Direct product G=N×Q with N=C2 and Q=D14.D4
dρLabelID
C2×D14.D4224C2xD14.D4448,941


Non-split extensions G=N.Q with N=C2 and Q=D14.D4
extensionφ:Q→Aut NdρLabelID
C2.1(D14.D4) = Dic7⋊C4⋊C4central extension (φ=1)448C2.1(D14.D4)448,186
C2.2(D14.D4) = C4⋊Dic78C4central extension (φ=1)448C2.2(D14.D4)448,188
C2.3(D14.D4) = C22.58(D4×D7)central extension (φ=1)224C2.3(D14.D4)448,198
C2.4(D14.D4) = D14⋊C4⋊C4central extension (φ=1)224C2.4(D14.D4)448,202
C2.5(D14.D4) = C24.4D14central extension (φ=1)224C2.5(D14.D4)448,479
C2.6(D14.D4) = C24.8D14central extension (φ=1)224C2.6(D14.D4)448,485
C2.7(D14.D4) = C24.12D14central extension (φ=1)224C2.7(D14.D4)448,490
C2.8(D14.D4) = C2.(C28⋊Q8)central stem extension (φ=1)448C2.8(D14.D4)448,191
C2.9(D14.D4) = (C2×Dic7).Q8central stem extension (φ=1)448C2.9(D14.D4)448,192
C2.10(D14.D4) = (C2×C4).21D28central stem extension (φ=1)224C2.10(D14.D4)448,208
C2.11(D14.D4) = (C22×D7).9D4central stem extension (φ=1)224C2.11(D14.D4)448,209
C2.12(D14.D4) = D14.D8central stem extension (φ=1)224C2.12(D14.D4)448,308
C2.13(D14.D4) = D14.SD16central stem extension (φ=1)224C2.13(D14.D4)448,311
C2.14(D14.D4) = C8⋊Dic7⋊C2central stem extension (φ=1)224C2.14(D14.D4)448,313
C2.15(D14.D4) = C561C4⋊C2central stem extension (φ=1)224C2.15(D14.D4)448,318
C2.16(D14.D4) = D14.1SD16central stem extension (φ=1)224C2.16(D14.D4)448,339
C2.17(D14.D4) = D14.Q16central stem extension (φ=1)224C2.17(D14.D4)448,343
C2.18(D14.D4) = D14⋊C8.C2central stem extension (φ=1)224C2.18(D14.D4)448,348
C2.19(D14.D4) = (C2×C8).D14central stem extension (φ=1)224C2.19(D14.D4)448,349
C2.20(D14.D4) = C24.7D14central stem extension (φ=1)224C2.20(D14.D4)448,483
C2.21(D14.D4) = C24.9D14central stem extension (φ=1)224C2.21(D14.D4)448,486
C2.22(D14.D4) = C24.14D14central stem extension (φ=1)224C2.22(D14.D4)448,493
C2.23(D14.D4) = C23.16D28central stem extension (φ=1)224C2.23(D14.D4)448,495

׿
×
𝔽