Extensions 1→N→G→Q→1 with N=C2 and Q=D142Q8

Direct product G=N×Q with N=C2 and Q=D142Q8
dρLabelID
C2×D142Q8224C2xD14:2Q8448,962


Non-split extensions G=N.Q with N=C2 and Q=D142Q8
extensionφ:Q→Aut NdρLabelID
C2.1(D142Q8) = C4⋊Dic77C4central extension (φ=1)448C2.1(D14:2Q8)448,187
C2.2(D142Q8) = D14⋊C4⋊C4central extension (φ=1)224C2.2(D14:2Q8)448,202
C2.3(D142Q8) = (C2×Dic7)⋊6Q8central extension (φ=1)448C2.3(D14:2Q8)448,508
C2.4(D142Q8) = C4⋊(C4⋊Dic7)central extension (φ=1)448C2.4(D14:2Q8)448,519
C2.5(D142Q8) = C4⋊(D14⋊C4)central extension (φ=1)224C2.5(D14:2Q8)448,521
C2.6(D142Q8) = (C2×Dic7)⋊Q8central stem extension (φ=1)448C2.6(D14:2Q8)448,190
C2.7(D142Q8) = (C2×C28).28D4central stem extension (φ=1)448C2.7(D14:2Q8)448,193
C2.8(D142Q8) = (C2×C4).20D28central stem extension (φ=1)224C2.8(D14:2Q8)448,207
C2.9(D142Q8) = (C2×C28).33D4central stem extension (φ=1)224C2.9(D14:2Q8)448,211
C2.10(D142Q8) = Dic14.3Q8central stem extension (φ=1)448C2.10(D14:2Q8)448,363
C2.11(D142Q8) = D283Q8central stem extension (φ=1)224C2.11(D14:2Q8)448,376
C2.12(D142Q8) = D284Q8central stem extension (φ=1)224C2.12(D14:2Q8)448,380
C2.13(D142Q8) = D28.3Q8central stem extension (φ=1)224C2.13(D14:2Q8)448,381
C2.14(D142Q8) = C28.7Q16central stem extension (φ=1)448C2.14(D14:2Q8)448,384
C2.15(D142Q8) = Dic144Q8central stem extension (φ=1)448C2.15(D14:2Q8)448,385
C2.16(D142Q8) = (C2×C4).44D28central stem extension (φ=1)448C2.16(D14:2Q8)448,517
C2.17(D142Q8) = (C2×C4).45D28central stem extension (φ=1)224C2.17(D14:2Q8)448,528

׿
×
𝔽