Extensions 1→N→G→Q→1 with N=C6×D19 and Q=C2

Direct product G=N×Q with N=C6×D19 and Q=C2
dρLabelID
C2×C6×D19228C2xC6xD19456,51

Semidirect products G=N:Q with N=C6×D19 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D19)⋊1C2 = C57⋊D4φ: C2/C1C2 ⊆ Out C6×D192284-(C6xD19):1C2456,15
(C6×D19)⋊2C2 = C3⋊D76φ: C2/C1C2 ⊆ Out C6×D192284+(C6xD19):2C2456,16
(C6×D19)⋊3C2 = C2×S3×D19φ: C2/C1C2 ⊆ Out C6×D191144+(C6xD19):3C2456,47
(C6×D19)⋊4C2 = C3×D76φ: C2/C1C2 ⊆ Out C6×D192282(C6xD19):4C2456,26
(C6×D19)⋊5C2 = C3×C19⋊D4φ: C2/C1C2 ⊆ Out C6×D192282(C6xD19):5C2456,28

Non-split extensions G=N.Q with N=C6×D19 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D19).C2 = Dic3×D19φ: C2/C1C2 ⊆ Out C6×D192284-(C6xD19).C2456,12
(C6×D19).2C2 = C12×D19φ: trivial image2282(C6xD19).2C2456,25

׿
×
𝔽