Extensions 1→N→G→Q→1 with N=C232 and Q=C2

Direct product G=N×Q with N=C232 and Q=C2
dρLabelID
C2×C232464C2xC232464,23

Semidirect products G=N:Q with N=C232 and Q=C2
extensionφ:Q→Aut NdρLabelID
C2321C2 = D232φ: C2/C1C2 ⊆ Aut C2322322+C232:1C2464,7
C2322C2 = C232⋊C2φ: C2/C1C2 ⊆ Aut C2322322C232:2C2464,6
C2323C2 = C8×D29φ: C2/C1C2 ⊆ Aut C2322322C232:3C2464,4
C2324C2 = C8⋊D29φ: C2/C1C2 ⊆ Aut C2322322C232:4C2464,5
C2325C2 = D8×C29φ: C2/C1C2 ⊆ Aut C2322322C232:5C2464,25
C2326C2 = SD16×C29φ: C2/C1C2 ⊆ Aut C2322322C232:6C2464,26
C2327C2 = M4(2)×C29φ: C2/C1C2 ⊆ Aut C2322322C232:7C2464,24

Non-split extensions G=N.Q with N=C232 and Q=C2
extensionφ:Q→Aut NdρLabelID
C232.1C2 = Dic116φ: C2/C1C2 ⊆ Aut C2324642-C232.1C2464,8
C232.2C2 = C292C16φ: C2/C1C2 ⊆ Aut C2324642C232.2C2464,1
C232.3C2 = Q16×C29φ: C2/C1C2 ⊆ Aut C2324642C232.3C2464,27

׿
×
𝔽