Extensions 1→N→G→Q→1 with N=C116 and Q=C4

Direct product G=N×Q with N=C116 and Q=C4
dρLabelID
C4×C116464C4xC116464,20

Semidirect products G=N:Q with N=C116 and Q=C4
extensionφ:Q→Aut NdρLabelID
C1161C4 = C116⋊C4φ: C4/C1C4 ⊆ Aut C1161164C116:1C4464,31
C1162C4 = C4×C29⋊C4φ: C4/C1C4 ⊆ Aut C1161164C116:2C4464,30
C1163C4 = C4⋊Dic29φ: C4/C2C2 ⊆ Aut C116464C116:3C4464,13
C1164C4 = C4×Dic29φ: C4/C2C2 ⊆ Aut C116464C116:4C4464,11
C1165C4 = C4⋊C4×C29φ: C4/C2C2 ⊆ Aut C116464C116:5C4464,22

Non-split extensions G=N.Q with N=C116 and Q=C4
extensionφ:Q→Aut NdρLabelID
C116.1C4 = C116.C4φ: C4/C1C4 ⊆ Aut C1162324C116.1C4464,29
C116.2C4 = C29⋊C16φ: C4/C1C4 ⊆ Aut C1164644C116.2C4464,3
C116.3C4 = D29⋊C8φ: C4/C1C4 ⊆ Aut C1162324C116.3C4464,28
C116.4C4 = C4.Dic29φ: C4/C2C2 ⊆ Aut C1162322C116.4C4464,10
C116.5C4 = C292C16φ: C4/C2C2 ⊆ Aut C1164642C116.5C4464,1
C116.6C4 = C2×C292C8φ: C4/C2C2 ⊆ Aut C116464C116.6C4464,9
C116.7C4 = M4(2)×C29φ: C4/C2C2 ⊆ Aut C1162322C116.7C4464,24

׿
×
𝔽