d | ρ | Label | ID | ||
---|---|---|---|---|---|
C2×C228 | 456 | C2xC228 | 456,39 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C57⋊1(C2×C4) = Dic3×D19 | φ: C2×C4/C2 → C22 ⊆ Aut C57 | 228 | 4- | C57:1(C2xC4) | 456,12 |
C57⋊2(C2×C4) = S3×Dic19 | φ: C2×C4/C2 → C22 ⊆ Aut C57 | 228 | 4- | C57:2(C2xC4) | 456,13 |
C57⋊3(C2×C4) = D57⋊C4 | φ: C2×C4/C2 → C22 ⊆ Aut C57 | 228 | 4+ | C57:3(C2xC4) | 456,14 |
C57⋊4(C2×C4) = C4×D57 | φ: C2×C4/C4 → C2 ⊆ Aut C57 | 228 | 2 | C57:4(C2xC4) | 456,35 |
C57⋊5(C2×C4) = C12×D19 | φ: C2×C4/C4 → C2 ⊆ Aut C57 | 228 | 2 | C57:5(C2xC4) | 456,25 |
C57⋊6(C2×C4) = S3×C76 | φ: C2×C4/C4 → C2 ⊆ Aut C57 | 228 | 2 | C57:6(C2xC4) | 456,30 |
C57⋊7(C2×C4) = C2×Dic57 | φ: C2×C4/C22 → C2 ⊆ Aut C57 | 456 | C57:7(C2xC4) | 456,37 | |
C57⋊8(C2×C4) = C6×Dic19 | φ: C2×C4/C22 → C2 ⊆ Aut C57 | 456 | C57:8(C2xC4) | 456,27 | |
C57⋊9(C2×C4) = Dic3×C38 | φ: C2×C4/C22 → C2 ⊆ Aut C57 | 456 | C57:9(C2xC4) | 456,32 |