Extensions 1→N→G→Q→1 with N=C3×Dic19 and Q=C2

Direct product G=N×Q with N=C3×Dic19 and Q=C2
dρLabelID
C6×Dic19456C6xDic19456,27

Semidirect products G=N:Q with N=C3×Dic19 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic19)⋊1C2 = S3×Dic19φ: C2/C1C2 ⊆ Out C3×Dic192284-(C3xDic19):1C2456,13
(C3×Dic19)⋊2C2 = D57⋊C4φ: C2/C1C2 ⊆ Out C3×Dic192284+(C3xDic19):2C2456,14
(C3×Dic19)⋊3C2 = C19⋊D12φ: C2/C1C2 ⊆ Out C3×Dic192284+(C3xDic19):3C2456,17
(C3×Dic19)⋊4C2 = C3×C19⋊D4φ: C2/C1C2 ⊆ Out C3×Dic192282(C3xDic19):4C2456,28
(C3×Dic19)⋊5C2 = C12×D19φ: trivial image2282(C3xDic19):5C2456,25

Non-split extensions G=N.Q with N=C3×Dic19 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic19).1C2 = C57⋊Q8φ: C2/C1C2 ⊆ Out C3×Dic194564-(C3xDic19).1C2456,18
(C3×Dic19).2C2 = C3×Dic38φ: C2/C1C2 ⊆ Out C3×Dic194562(C3xDic19).2C2456,24

׿
×
𝔽