Extensions 1→N→G→Q→1 with N=C58 and Q=D4

Direct product G=N×Q with N=C58 and Q=D4
dρLabelID
D4×C58232D4xC58464,46

Semidirect products G=N:Q with N=C58 and Q=D4
extensionφ:Q→Aut NdρLabelID
C581D4 = C2×D116φ: D4/C4C2 ⊆ Aut C58232C58:1D4464,37
C582D4 = C2×C29⋊D4φ: D4/C22C2 ⊆ Aut C58232C58:2D4464,44

Non-split extensions G=N.Q with N=C58 and Q=D4
extensionφ:Q→Aut NdρLabelID
C58.1D4 = C232⋊C2φ: D4/C4C2 ⊆ Aut C582322C58.1D4464,6
C58.2D4 = D232φ: D4/C4C2 ⊆ Aut C582322+C58.2D4464,7
C58.3D4 = Dic116φ: D4/C4C2 ⊆ Aut C584642-C58.3D4464,8
C58.4D4 = C4⋊Dic29φ: D4/C4C2 ⊆ Aut C58464C58.4D4464,13
C58.5D4 = C58.D4φ: D4/C22C2 ⊆ Aut C58464C58.5D4464,12
C58.6D4 = D58⋊C4φ: D4/C22C2 ⊆ Aut C58232C58.6D4464,14
C58.7D4 = D4⋊D29φ: D4/C22C2 ⊆ Aut C582324+C58.7D4464,15
C58.8D4 = D4.D29φ: D4/C22C2 ⊆ Aut C582324-C58.8D4464,16
C58.9D4 = Q8⋊D29φ: D4/C22C2 ⊆ Aut C582324+C58.9D4464,17
C58.10D4 = C29⋊Q16φ: D4/C22C2 ⊆ Aut C584644-C58.10D4464,18
C58.11D4 = C23.D29φ: D4/C22C2 ⊆ Aut C58232C58.11D4464,19
C58.12D4 = C22⋊C4×C29central extension (φ=1)232C58.12D4464,21
C58.13D4 = C4⋊C4×C29central extension (φ=1)464C58.13D4464,22
C58.14D4 = D8×C29central extension (φ=1)2322C58.14D4464,25
C58.15D4 = SD16×C29central extension (φ=1)2322C58.15D4464,26
C58.16D4 = Q16×C29central extension (φ=1)4642C58.16D4464,27

׿
×
𝔽