Extensions 1→N→G→Q→1 with N=C2xC58 and Q=C4

Direct product G=NxQ with N=C2xC58 and Q=C4
dρLabelID
C22xC116464C2^2xC116464,45

Semidirect products G=N:Q with N=C2xC58 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2xC58):1C4 = D29.D4φ: C4/C1C4 ⊆ Aut C2xC581164+(C2xC58):1C4464,34
(C2xC58):2C4 = C22xC29:C4φ: C4/C1C4 ⊆ Aut C2xC58116(C2xC58):2C4464,49
(C2xC58):3C4 = C22:C4xC29φ: C4/C2C2 ⊆ Aut C2xC58232(C2xC58):3C4464,21
(C2xC58):4C4 = C23.D29φ: C4/C2C2 ⊆ Aut C2xC58232(C2xC58):4C4464,19
(C2xC58):5C4 = C22xDic29φ: C4/C2C2 ⊆ Aut C2xC58464(C2xC58):5C4464,43

Non-split extensions G=N.Q with N=C2xC58 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2xC58).1C4 = C2xC29:C8φ: C4/C1C4 ⊆ Aut C2xC58464(C2xC58).1C4464,32
(C2xC58).2C4 = C29:M4(2)φ: C4/C1C4 ⊆ Aut C2xC582324-(C2xC58).2C4464,33
(C2xC58).3C4 = M4(2)xC29φ: C4/C2C2 ⊆ Aut C2xC582322(C2xC58).3C4464,24
(C2xC58).4C4 = C2xC29:2C8φ: C4/C2C2 ⊆ Aut C2xC58464(C2xC58).4C4464,9
(C2xC58).5C4 = C4.Dic29φ: C4/C2C2 ⊆ Aut C2xC582322(C2xC58).5C4464,10

׿
x
:
Z
F
o
wr
Q
<