Extensions 1→N→G→Q→1 with N=D6 and Q=C2xDic5

Direct product G=NxQ with N=D6 and Q=C2xDic5
dρLabelID
C22xS3xDic5240C2^2xS3xDic5480,1115

Semidirect products G=N:Q with N=D6 and Q=C2xDic5
extensionφ:Q→Out NdρLabelID
D6:1(C2xDic5) = Dic5xD12φ: C2xDic5/Dic5C2 ⊆ Out D6240D6:1(C2xDic5)480,491
D6:2(C2xDic5) = Dic15:8D4φ: C2xDic5/Dic5C2 ⊆ Out D6240D6:2(C2xDic5)480,511
D6:3(C2xDic5) = Dic5xC3:D4φ: C2xDic5/Dic5C2 ⊆ Out D6240D6:3(C2xDic5)480,627
D6:4(C2xDic5) = Dic15:17D4φ: C2xDic5/Dic5C2 ⊆ Out D6240D6:4(C2xDic5)480,636
D6:5(C2xDic5) = C2xD6:Dic5φ: C2xDic5/C2xC10C2 ⊆ Out D6240D6:5(C2xDic5)480,614
D6:6(C2xDic5) = S3xC23.D5φ: C2xDic5/C2xC10C2 ⊆ Out D6120D6:6(C2xDic5)480,630

Non-split extensions G=N.Q with N=D6 and Q=C2xDic5
extensionφ:Q→Out NdρLabelID
D6.1(C2xDic5) = D12.2Dic5φ: C2xDic5/Dic5C2 ⊆ Out D62404D6.1(C2xDic5)480,362
D6.2(C2xDic5) = D12.Dic5φ: C2xDic5/Dic5C2 ⊆ Out D62404D6.2(C2xDic5)480,364
D6.3(C2xDic5) = C2xD6.Dic5φ: C2xDic5/C2xC10C2 ⊆ Out D6240D6.3(C2xDic5)480,370
D6.4(C2xDic5) = (S3xC20):5C4φ: C2xDic5/C2xC10C2 ⊆ Out D6240D6.4(C2xDic5)480,414
D6.5(C2xDic5) = (S3xC20):7C4φ: C2xDic5/C2xC10C2 ⊆ Out D6240D6.5(C2xDic5)480,447
D6.6(C2xDic5) = C2xS3xC5:2C8φ: trivial image240D6.6(C2xDic5)480,361
D6.7(C2xDic5) = S3xC4.Dic5φ: trivial image1204D6.7(C2xDic5)480,363
D6.8(C2xDic5) = C4xS3xDic5φ: trivial image240D6.8(C2xDic5)480,473
D6.9(C2xDic5) = S3xC4:Dic5φ: trivial image240D6.9(C2xDic5)480,502

׿
x
:
Z
F
o
wr
Q
<