Extensions 1→N→G→Q→1 with N=Dic3 and Q=C5xD4

Direct product G=NxQ with N=Dic3 and Q=C5xD4
dρLabelID
C5xD4xDic3240C5xD4xDic3480,813

Semidirect products G=N:Q with N=Dic3 and Q=C5xD4
extensionφ:Q→Out NdρLabelID
Dic3:1(C5xD4) = C5xC12:3D4φ: C5xD4/C20C2 ⊆ Out Dic3240Dic3:1(C5xD4)480,819
Dic3:2(C5xD4) = C5xDic3:D4φ: C5xD4/C2xC10C2 ⊆ Out Dic3240Dic3:2(C5xD4)480,763
Dic3:3(C5xD4) = C5xC23.14D6φ: C5xD4/C2xC10C2 ⊆ Out Dic3240Dic3:3(C5xD4)480,818
Dic3:4(C5xD4) = C5xDic3:4D4φ: trivial image240Dic3:4(C5xD4)480,760
Dic3:5(C5xD4) = C5xDic3:5D4φ: trivial image240Dic3:5(C5xD4)480,772

Non-split extensions G=N.Q with N=Dic3 and Q=C5xD4
extensionφ:Q→Out NdρLabelID
Dic3.1(C5xD4) = C5xC23.11D6φ: C5xD4/C20C2 ⊆ Out Dic3240Dic3.1(C5xD4)480,764
Dic3.2(C5xD4) = C5xC12:Q8φ: C5xD4/C20C2 ⊆ Out Dic3480Dic3.2(C5xD4)480,767
Dic3.3(C5xD4) = C5xS3xD8φ: C5xD4/C20C2 ⊆ Out Dic31204Dic3.3(C5xD4)480,789
Dic3.4(C5xD4) = C5xS3xSD16φ: C5xD4/C20C2 ⊆ Out Dic31204Dic3.4(C5xD4)480,792
Dic3.5(C5xD4) = C5xS3xQ16φ: C5xD4/C20C2 ⊆ Out Dic32404Dic3.5(C5xD4)480,796
Dic3.6(C5xD4) = C5xDic3.D4φ: C5xD4/C2xC10C2 ⊆ Out Dic3240Dic3.6(C5xD4)480,757
Dic3.7(C5xD4) = C5xD6:Q8φ: C5xD4/C2xC10C2 ⊆ Out Dic3240Dic3.7(C5xD4)480,775
Dic3.8(C5xD4) = C5xD8:S3φ: C5xD4/C2xC10C2 ⊆ Out Dic31204Dic3.8(C5xD4)480,790
Dic3.9(C5xD4) = C5xQ8:3D6φ: C5xD4/C2xC10C2 ⊆ Out Dic31204Dic3.9(C5xD4)480,793
Dic3.10(C5xD4) = C5xD4.D6φ: C5xD4/C2xC10C2 ⊆ Out Dic32404Dic3.10(C5xD4)480,794
Dic3.11(C5xD4) = C5xQ16:S3φ: C5xD4/C2xC10C2 ⊆ Out Dic32404Dic3.11(C5xD4)480,797
Dic3.12(C5xD4) = C5xD8:3S3φ: trivial image2404Dic3.12(C5xD4)480,791
Dic3.13(C5xD4) = C5xQ8.7D6φ: trivial image2404Dic3.13(C5xD4)480,795
Dic3.14(C5xD4) = C5xD24:C2φ: trivial image2404Dic3.14(C5xD4)480,798

׿
x
:
Z
F
o
wr
Q
<