Extensions 1→N→G→Q→1 with N=C5×D4 and Q=C12

Direct product G=N×Q with N=C5×D4 and Q=C12
dρLabelID
D4×C60240D4xC60480,923

Semidirect products G=N:Q with N=C5×D4 and Q=C12
extensionφ:Q→Out NdρLabelID
(C5×D4)⋊1C12 = C3×D20⋊C4φ: C12/C3C4 ⊆ Out C5×D41208(C5xD4):1C12480,287
(C5×D4)⋊2C12 = C3×D4⋊F5φ: C12/C3C4 ⊆ Out C5×D41208(C5xD4):2C12480,288
(C5×D4)⋊3C12 = C3×D4×F5φ: C12/C3C4 ⊆ Out C5×D4608(C5xD4):3C12480,1054
(C5×D4)⋊4C12 = C3×D4⋊Dic5φ: C12/C6C2 ⊆ Out C5×D4240(C5xD4):4C12480,110
(C5×D4)⋊5C12 = C3×D42Dic5φ: C12/C6C2 ⊆ Out C5×D41204(C5xD4):5C12480,115
(C5×D4)⋊6C12 = C3×D4×Dic5φ: C12/C6C2 ⊆ Out C5×D4240(C5xD4):6C12480,727
(C5×D4)⋊7C12 = C15×D4⋊C4φ: C12/C6C2 ⊆ Out C5×D4240(C5xD4):7C12480,205
(C5×D4)⋊8C12 = C15×C4≀C2φ: C12/C6C2 ⊆ Out C5×D41202(C5xD4):8C12480,207

Non-split extensions G=N.Q with N=C5×D4 and Q=C12
extensionφ:Q→Out NdρLabelID
(C5×D4).C12 = C3×D4.F5φ: C12/C3C4 ⊆ Out C5×D42408(C5xD4).C12480,1053
(C5×D4).2C12 = C3×D4.Dic5φ: C12/C6C2 ⊆ Out C5×D42404(C5xD4).2C12480,741
(C5×D4).3C12 = C15×C8○D4φ: trivial image2402(C5xD4).3C12480,936

׿
×
𝔽