Extensions 1→N→G→Q→1 with N=C3×D4 and Q=C20

Direct product G=N×Q with N=C3×D4 and Q=C20
dρLabelID
D4×C60240D4xC60480,923

Semidirect products G=N:Q with N=C3×D4 and Q=C20
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1C20 = C5×D4⋊Dic3φ: C20/C10C2 ⊆ Out C3×D4240(C3xD4):1C20480,151
(C3×D4)⋊2C20 = C5×Q83Dic3φ: C20/C10C2 ⊆ Out C3×D41204(C3xD4):2C20480,156
(C3×D4)⋊3C20 = C5×D4×Dic3φ: C20/C10C2 ⊆ Out C3×D4240(C3xD4):3C20480,813
(C3×D4)⋊4C20 = C15×D4⋊C4φ: C20/C10C2 ⊆ Out C3×D4240(C3xD4):4C20480,205
(C3×D4)⋊5C20 = C15×C4≀C2φ: C20/C10C2 ⊆ Out C3×D41202(C3xD4):5C20480,207

Non-split extensions G=N.Q with N=C3×D4 and Q=C20
extensionφ:Q→Out NdρLabelID
(C3×D4).C20 = C5×D4.Dic3φ: C20/C10C2 ⊆ Out C3×D42404(C3xD4).C20480,827
(C3×D4).2C20 = C15×C8○D4φ: trivial image2402(C3xD4).2C20480,936

׿
×
𝔽