Extensions 1→N→G→Q→1 with N=C3⋊D20 and Q=C4

Direct product G=N×Q with N=C3⋊D20 and Q=C4
dρLabelID
C4×C3⋊D20240C4xC3:D20480,519

Semidirect products G=N:Q with N=C3⋊D20 and Q=C4
extensionφ:Q→Out NdρLabelID
C3⋊D201C4 = F5×C3⋊D4φ: C4/C1C4 ⊆ Out C3⋊D20608C3:D20:1C4480,1010
C3⋊D202C4 = C3⋊D4⋊F5φ: C4/C1C4 ⊆ Out C3⋊D20608C3:D20:2C4480,1012
C3⋊D203C4 = Dic34D20φ: C4/C2C2 ⊆ Out C3⋊D20240C3:D20:3C4480,471
C3⋊D204C4 = Dic1513D4φ: C4/C2C2 ⊆ Out C3⋊D20240C3:D20:4C4480,472
C3⋊D205C4 = C1520(C4×D4)φ: C4/C2C2 ⊆ Out C3⋊D20240C3:D20:5C4480,520

Non-split extensions G=N.Q with N=C3⋊D20 and Q=C4
extensionφ:Q→Out NdρLabelID
C3⋊D20.1C4 = D60.C4φ: C4/C1C4 ⊆ Out C3⋊D202408+C3:D20.1C4480,990
C3⋊D20.2C4 = Dic6.F5φ: C4/C1C4 ⊆ Out C3⋊D202408+C3:D20.2C4480,992
C3⋊D20.3C4 = C40.34D6φ: C4/C2C2 ⊆ Out C3⋊D202404C3:D20.3C4480,342
C3⋊D20.4C4 = C40.55D6φ: C4/C2C2 ⊆ Out C3⋊D202404C3:D20.4C4480,343
C3⋊D20.5C4 = C40.35D6φ: C4/C2C2 ⊆ Out C3⋊D202404C3:D20.5C4480,344
C3⋊D20.6C4 = C40.54D6φ: trivial image2404C3:D20.6C4480,341

׿
×
𝔽