Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C2xC30

Direct product G=NxQ with N=C2xC4 and Q=C2xC30
dρLabelID
C23xC60480C2^3xC60480,1180

Semidirect products G=N:Q with N=C2xC4 and Q=C2xC30
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C2xC30) = C15xC22wrC2φ: C2xC30/C15C22 ⊆ Aut C2xC4120(C2xC4):1(C2xC30)480,925
(C2xC4):2(C2xC30) = C15x2+ 1+4φ: C2xC30/C15C22 ⊆ Aut C2xC41204(C2xC4):2(C2xC30)480,1184
(C2xC4):3(C2xC30) = C22:C4xC30φ: C2xC30/C30C2 ⊆ Aut C2xC4240(C2xC4):3(C2xC30)480,920
(C2xC4):4(C2xC30) = D4xC2xC30φ: C2xC30/C30C2 ⊆ Aut C2xC4240(C2xC4):4(C2xC30)480,1181
(C2xC4):5(C2xC30) = C4oD4xC30φ: C2xC30/C30C2 ⊆ Aut C2xC4240(C2xC4):5(C2xC30)480,1183

Non-split extensions G=N.Q with N=C2xC4 and Q=C2xC30
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C2xC30) = C15xC4.D4φ: C2xC30/C15C22 ⊆ Aut C2xC41204(C2xC4).1(C2xC30)480,203
(C2xC4).2(C2xC30) = C15xC4.10D4φ: C2xC30/C15C22 ⊆ Aut C2xC42404(C2xC4).2(C2xC30)480,204
(C2xC4).3(C2xC30) = C15xC4:D4φ: C2xC30/C15C22 ⊆ Aut C2xC4240(C2xC4).3(C2xC30)480,926
(C2xC4).4(C2xC30) = C15xC22:Q8φ: C2xC30/C15C22 ⊆ Aut C2xC4240(C2xC4).4(C2xC30)480,927
(C2xC4).5(C2xC30) = C15xC22.D4φ: C2xC30/C15C22 ⊆ Aut C2xC4240(C2xC4).5(C2xC30)480,928
(C2xC4).6(C2xC30) = C15xC4:Q8φ: C2xC30/C15C22 ⊆ Aut C2xC4480(C2xC4).6(C2xC30)480,933
(C2xC4).7(C2xC30) = C15xC8:C22φ: C2xC30/C15C22 ⊆ Aut C2xC41204(C2xC4).7(C2xC30)480,941
(C2xC4).8(C2xC30) = C15xC8.C22φ: C2xC30/C15C22 ⊆ Aut C2xC42404(C2xC4).8(C2xC30)480,942
(C2xC4).9(C2xC30) = C15x2- 1+4φ: C2xC30/C15C22 ⊆ Aut C2xC42404(C2xC4).9(C2xC30)480,1185
(C2xC4).10(C2xC30) = C4:C4xC30φ: C2xC30/C30C2 ⊆ Aut C2xC4480(C2xC4).10(C2xC30)480,921
(C2xC4).11(C2xC30) = D4xC60φ: C2xC30/C30C2 ⊆ Aut C2xC4240(C2xC4).11(C2xC30)480,923
(C2xC4).12(C2xC30) = Q8xC60φ: C2xC30/C30C2 ⊆ Aut C2xC4480(C2xC4).12(C2xC30)480,924
(C2xC4).13(C2xC30) = C15xC4.4D4φ: C2xC30/C30C2 ⊆ Aut C2xC4240(C2xC4).13(C2xC30)480,929
(C2xC4).14(C2xC30) = C15xC42.C2φ: C2xC30/C30C2 ⊆ Aut C2xC4480(C2xC4).14(C2xC30)480,930
(C2xC4).15(C2xC30) = C15xC42:2C2φ: C2xC30/C30C2 ⊆ Aut C2xC4240(C2xC4).15(C2xC30)480,931
(C2xC4).16(C2xC30) = C15xD4:C4φ: C2xC30/C30C2 ⊆ Aut C2xC4240(C2xC4).16(C2xC30)480,205
(C2xC4).17(C2xC30) = C15xQ8:C4φ: C2xC30/C30C2 ⊆ Aut C2xC4480(C2xC4).17(C2xC30)480,206
(C2xC4).18(C2xC30) = C15xC4wrC2φ: C2xC30/C30C2 ⊆ Aut C2xC41202(C2xC4).18(C2xC30)480,207
(C2xC4).19(C2xC30) = C15xC4.Q8φ: C2xC30/C30C2 ⊆ Aut C2xC4480(C2xC4).19(C2xC30)480,209
(C2xC4).20(C2xC30) = C15xC2.D8φ: C2xC30/C30C2 ⊆ Aut C2xC4480(C2xC4).20(C2xC30)480,210
(C2xC4).21(C2xC30) = C15xC8.C4φ: C2xC30/C30C2 ⊆ Aut C2xC42402(C2xC4).21(C2xC30)480,211
(C2xC4).22(C2xC30) = C15xC42:C2φ: C2xC30/C30C2 ⊆ Aut C2xC4240(C2xC4).22(C2xC30)480,922
(C2xC4).23(C2xC30) = C15xC4:1D4φ: C2xC30/C30C2 ⊆ Aut C2xC4240(C2xC4).23(C2xC30)480,932
(C2xC4).24(C2xC30) = M4(2)xC30φ: C2xC30/C30C2 ⊆ Aut C2xC4240(C2xC4).24(C2xC30)480,935
(C2xC4).25(C2xC30) = C15xC8oD4φ: C2xC30/C30C2 ⊆ Aut C2xC42402(C2xC4).25(C2xC30)480,936
(C2xC4).26(C2xC30) = D8xC30φ: C2xC30/C30C2 ⊆ Aut C2xC4240(C2xC4).26(C2xC30)480,937
(C2xC4).27(C2xC30) = SD16xC30φ: C2xC30/C30C2 ⊆ Aut C2xC4240(C2xC4).27(C2xC30)480,938
(C2xC4).28(C2xC30) = Q16xC30φ: C2xC30/C30C2 ⊆ Aut C2xC4480(C2xC4).28(C2xC30)480,939
(C2xC4).29(C2xC30) = C15xC4oD8φ: C2xC30/C30C2 ⊆ Aut C2xC42402(C2xC4).29(C2xC30)480,940
(C2xC4).30(C2xC30) = Q8xC2xC30φ: C2xC30/C30C2 ⊆ Aut C2xC4480(C2xC4).30(C2xC30)480,1182
(C2xC4).31(C2xC30) = C15xC8:C4central extension (φ=1)480(C2xC4).31(C2xC30)480,200
(C2xC4).32(C2xC30) = C15xC22:C8central extension (φ=1)240(C2xC4).32(C2xC30)480,201
(C2xC4).33(C2xC30) = C15xC4:C8central extension (φ=1)480(C2xC4).33(C2xC30)480,208

׿
x
:
Z
F
o
wr
Q
<