Extensions 1→N→G→Q→1 with N=C3⋊C16 and Q=D5

Direct product G=N×Q with N=C3⋊C16 and Q=D5
dρLabelID
D5×C3⋊C162404D5xC3:C16480,7

Semidirect products G=N:Q with N=C3⋊C16 and Q=D5
extensionφ:Q→Out NdρLabelID
C3⋊C161D5 = C3⋊D80φ: D5/C5C2 ⊆ Out C3⋊C162404+C3:C16:1D5480,14
C3⋊C162D5 = D40.S3φ: D5/C5C2 ⊆ Out C3⋊C162404-C3:C16:2D5480,18
C3⋊C163D5 = C24.D10φ: D5/C5C2 ⊆ Out C3⋊C162404+C3:C16:3D5480,19
C3⋊C164D5 = C40.51D6φ: D5/C5C2 ⊆ Out C3⋊C162404C3:C16:4D5480,10
C3⋊C165D5 = D30.5C8φ: D5/C5C2 ⊆ Out C3⋊C162404C3:C16:5D5480,12
C3⋊C166D5 = D152C16φ: trivial image2404C3:C16:6D5480,9

Non-split extensions G=N.Q with N=C3⋊C16 and Q=D5
extensionφ:Q→Out NdρLabelID
C3⋊C16.D5 = C3⋊Dic40φ: D5/C5C2 ⊆ Out C3⋊C164804-C3:C16.D5480,23

׿
×
𝔽