Extensions 1→N→G→Q→1 with N=C52C16 and Q=S3

Direct product G=N×Q with N=C52C16 and Q=S3
dρLabelID
S3×C52C162404S3xC5:2C16480,8

Semidirect products G=N:Q with N=C52C16 and Q=S3
extensionφ:Q→Out NdρLabelID
C52C161S3 = C5⋊D48φ: S3/C3C2 ⊆ Out C52C162404+C5:2C16:1S3480,15
C52C162S3 = D24.D5φ: S3/C3C2 ⊆ Out C52C162404-C5:2C16:2S3480,20
C52C163S3 = Dic12⋊D5φ: S3/C3C2 ⊆ Out C52C162404+C5:2C16:3S3480,21
C52C164S3 = C40.52D6φ: S3/C3C2 ⊆ Out C52C162404C5:2C16:4S3480,11
C52C165S3 = D30.5C8φ: S3/C3C2 ⊆ Out C52C162404C5:2C16:5S3480,12
C52C166S3 = D152C16φ: trivial image2404C5:2C16:6S3480,9

Non-split extensions G=N.Q with N=C52C16 and Q=S3
extensionφ:Q→Out NdρLabelID
C52C16.1S3 = C5⋊Dic24φ: S3/C3C2 ⊆ Out C52C164804-C5:2C16.1S3480,24
C52C16.2S3 = C15⋊C32φ: S3/C3C2 ⊆ Out C52C164804C5:2C16.2S3480,6

׿
×
𝔽