Extensions 1→N→G→Q→1 with N=C2xC40 and Q=C6

Direct product G=NxQ with N=C2xC40 and Q=C6
dρLabelID
C22xC120480C2^2xC120480,934

Semidirect products G=N:Q with N=C2xC40 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C2xC40):1C6 = C3xD10:1C8φ: C6/C3C2 ⊆ Aut C2xC40240(C2xC40):1C6480,98
(C2xC40):2C6 = C3xD20:5C4φ: C6/C3C2 ⊆ Aut C2xC40240(C2xC40):2C6480,99
(C2xC40):3C6 = C15xC22:C8φ: C6/C3C2 ⊆ Aut C2xC40240(C2xC40):3C6480,201
(C2xC40):4C6 = C15xD4:C4φ: C6/C3C2 ⊆ Aut C2xC40240(C2xC40):4C6480,205
(C2xC40):5C6 = C6xD40φ: C6/C3C2 ⊆ Aut C2xC40240(C2xC40):5C6480,696
(C2xC40):6C6 = C3xD40:7C2φ: C6/C3C2 ⊆ Aut C2xC402402(C2xC40):6C6480,697
(C2xC40):7C6 = C6xC40:C2φ: C6/C3C2 ⊆ Aut C2xC40240(C2xC40):7C6480,695
(C2xC40):8C6 = D5xC2xC24φ: C6/C3C2 ⊆ Aut C2xC40240(C2xC40):8C6480,692
(C2xC40):9C6 = C6xC8:D5φ: C6/C3C2 ⊆ Aut C2xC40240(C2xC40):9C6480,693
(C2xC40):10C6 = C3xD20.3C4φ: C6/C3C2 ⊆ Aut C2xC402402(C2xC40):10C6480,694
(C2xC40):11C6 = D8xC30φ: C6/C3C2 ⊆ Aut C2xC40240(C2xC40):11C6480,937
(C2xC40):12C6 = C15xC4oD8φ: C6/C3C2 ⊆ Aut C2xC402402(C2xC40):12C6480,940
(C2xC40):13C6 = SD16xC30φ: C6/C3C2 ⊆ Aut C2xC40240(C2xC40):13C6480,938
(C2xC40):14C6 = M4(2)xC30φ: C6/C3C2 ⊆ Aut C2xC40240(C2xC40):14C6480,935
(C2xC40):15C6 = C15xC8oD4φ: C6/C3C2 ⊆ Aut C2xC402402(C2xC40):15C6480,936

Non-split extensions G=N.Q with N=C2xC40 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C2xC40).1C6 = C3xC20.8Q8φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).1C6480,92
(C2xC40).2C6 = C3xC20.44D4φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).2C6480,94
(C2xC40).3C6 = C15xQ8:C4φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).3C6480,206
(C2xC40).4C6 = C15xC4:C8φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).4C6480,208
(C2xC40).5C6 = C3xC40:5C4φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).5C6480,96
(C2xC40).6C6 = C6xDic20φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).6C6480,698
(C2xC40).7C6 = C3xC40.6C4φ: C6/C3C2 ⊆ Aut C2xC402402(C2xC40).7C6480,97
(C2xC40).8C6 = C3xC40:6C4φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).8C6480,95
(C2xC40).9C6 = C6xC5:2C16φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).9C6480,89
(C2xC40).10C6 = C3xC20.4C8φ: C6/C3C2 ⊆ Aut C2xC402402(C2xC40).10C6480,90
(C2xC40).11C6 = Dic5xC24φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).11C6480,91
(C2xC40).12C6 = C3xC40:8C4φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).12C6480,93
(C2xC40).13C6 = C15xC2.D8φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).13C6480,210
(C2xC40).14C6 = Q16xC30φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).14C6480,939
(C2xC40).15C6 = C15xC8.C4φ: C6/C3C2 ⊆ Aut C2xC402402(C2xC40).15C6480,211
(C2xC40).16C6 = C15xC4.Q8φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).16C6480,209
(C2xC40).17C6 = C15xC8:C4φ: C6/C3C2 ⊆ Aut C2xC40480(C2xC40).17C6480,200
(C2xC40).18C6 = C15xM5(2)φ: C6/C3C2 ⊆ Aut C2xC402402(C2xC40).18C6480,213

׿
x
:
Z
F
o
wr
Q
<